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Highlights
Global population is forecast to increase
rapidly by 2050, requiring a significant in-
crease in food production, with special
demand for high-quality protein.

The aquaculture industry is forecast to
grow a further 37% between 2016 and
2030 and its heavy reliance on feeds pro-
duced from wild-caught fish is not
sustainable.

There is a growing challenge of develop-
ing nutritious, sustainable aquafeeds
from alternative sources while ensuring
Photosynthetic microalgae are unicellular plants, many of which are rich in pro-
tein, lipids, and bioactives and form an important part of the base of the natural
aquatic food chain. Population growth, demand for high-quality protein, and de-
pletion of wild fishstocks are forecast to increase aquacultural fish demand by
37% between 2016 and 2030. This review highlights the role of microalgae and
recent advances that can support a sustainable ‘circular’ aquaculture industry.
Microalgae-based feed supplements and recombinant therapeutic production
offer significant opportunities to improve animal health, disease resistance,
and yields. Critically, microalgae in biofloc, ‘green water’, nutrient remediation,
and integrated multitrophic aquaculture technologies offer innovative solutions
for economic and environmentally sustainable development in line with key UN
Sustainability Goals.
that farmed-fish supplymeets consump-
tion demands.

Development of the aquaculture industry
is also constrained due to aquatic dis-
eases caused by various pathogens.

Microalgae form the base of the aquatic
food chain and contain essential amino
acids, carbohydrates, lipids (including
essential polyunsaturated fatty acids
not produced by other organisms),
and carotenoid pigments as well as an-
tioxidants, immunostimulants, and anti-
microbial compounds.
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Increasing Demand for Aquaculture Feeds
Aquaculture (see Glossary) plays an increasingly important role in global food security, a critical
challenge of the 21st century. The global population is forecast to increase from 7.6 to 9.8 billion
by 2050i, causing a projected food demand increase of 60–100% above 2005 levels [1,2]. In
parallel, rising affluence is predicted to increase the demand for high-quality protein by
110% [2], emphasizing the need to establish sustainableii high-protein food production networks.
Currently, ~57% of global protein supply is from plant sources (almost exclusively terrestrial);
the remaining 43% is from animal sources (red meat, poultry, seafood, dairy, eggs, and
other products) [3]. Of the 1.7 billion tonnes year−1 of animal products produced globally
in 2016iii, wild-caught and farmed fish accounted for ~10% (171 million tonnes year−1, US
$143 billion) [4]. As wild-caught fish yields have plateaued over the past 20 years, fish demand
has been met by an expanding aquaculture sector [4], which has increased from ~20 million
tonnes (1950) to ~80 million tonnes (2016), at a growth rate of ~2.3 million tonnes year−1

(~6%)iv.

Aquaculture’s contribution to meeting future food demand will require more sustainable practices
that support both aquatic and terrestrial ecosystems. A key problem to date has been the high
use of wild-caught pelagic fish for the production of fishmeal and fish oil for formulated aquafeeds.
This has put pressure on populations of low-trophic species that are keystones in aquatic food
webs (e.g., anchovies, capelin, herring, mackerel, menhaden, sardines) and which wild fisheries
depend on [5,6]. It also increases the potential spread of bacterial (e.g., Vibrio cholerae [7]) and
viral (e.g., iridovirus [8]) diseases via raw fish distribution.

Fishmeal is a favored ingredient in fish nutrition as it is rich in protein, easily digestible, and palat-
able and provides a well-balanced source of essential amino acids, phospholipids, and omega-3
fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Increasing
use of alternative ingredients include those from animal, plant, algal, and microbial sources,
each differing in their crude protein and fat content (Figure 1A,B, respectively).
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Glossary
Animal therapeutics: therapeutic
agents or compounds administered to
animals to treat disease.
Aquaculture: also known as
aquafarming, aquaculture is the farming
of aquatic organisms (e.g., fish,
crustaceans, molluscs, algae). Unlike
commercial wild-catch fishing,
aquaculture systems produce fish in
more controlled environments.
Biofilter organisms: organisms that
maintain water quality (i.e., oxygen,
nitrogen, organic solids, and carbon
dioxide concentration) in closed systems
by removing pollutants from the
environment.
Bioflocs: aggregates of
microorganisms (e.g., algae, bacteria)
and organic matter (e.g., fish waste,
feed). They are nutritious, rich in protein,
and foraged on by farmed species.
Broodstock: a population of mature
organisms maintained for breeding
purposes.
Circular bioeconomy: the intersection
between the circular economy, which
aims to reduce the inputs, wastes,
energy, and emissions of a system, and
the bioeconomy, which provides
economic productivity through
biotechnology and renewable biological
sources. It promotes production from
renewable biosources, extensive
remanufacturing, reuse, and recycling of
material and nutrient streams, cascading
to maximize value and reduce waste,
and resource-efficient and ecofriendly
solutions.
Feed conversion ratio (FCR): the
amount of fish produced from the
amount of feed given (weight for weight).
Formulated feed: a quantified amount
of feed ingredients that are combined to
form a single uniform mixture (diet) that
supplies all of an animal’s nutrient
requirements.
Green water aquaculture: a type of
aquafarming in which ponds (usually
freshwater) are inoculated by microalgal
populations following fertilization (e.g.,
chemical, naturally nutrient-rich water).
After inoculation, the ponds turn green,
hence the name ‘green water’. Green
water systems can potentially be used to
grow multiple freshwater fish species
such as tilapia and carp. Additionally,
they can be integrated with paddy fields,
to coproduce rice as well.
Hatchery: a place where
aquaculture eggs are hatched and the
early-life-stage organisms are cared for.
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Crops such as soybean, canola, corn, lupin, wheat, and barley are widely used as protein substi-
tutes (e.g., soy contributes ~60–70% protein in commercial aquafeeds for tilapia) [9] but are un-
able to provide sufficient levels of EPA/DHA [10], lysine, and methionine and can contain
antinutritional compounds (e.g., saponins, tannins, soluble nonstarch polysaccharides) [11].
Therefore, only a certain proportion of the diet can be substituted before negative impacts on
growth and health outweigh the benefits. As an example, Figure 1C compares the maximum rec-
ommended dietary substitution level of non-fishmeal feeds for tilapia, which is a prominent farmed
fish. Furthermore, as the interlinkages between agriculture and aquaculture become stronger due
to the production of crop-based feeds, the environmental impacts of aquaculture also expand
(e.g., arable land use, freshwater use, agricultural runoff) [10].

A key challenge is to develop aquafeeds that can: (i) provide high nutritional quality; (ii) maintain
sustainable food systems; and (iii) ensure that fish yields meet increasing demand [12].

Next-generation microalgae-based feeds offer promising food sources for sustainable aquacul-
ture. Microalgae are the primary food source for zooplankton and lower-trophic fish that
subsequently feed fish higher up the food chain and are a valuable source of key nutrients.
Depending on the algal species and their growth conditions, they can contain up to 60% protein,
60% carbohydrates, or 70% oils [13] and produce valuable pigments, growth-promoting
substances, and hormones as well as secondary metabolites that provide natural antioxidant,
antimicrobial, anti-inflammatory, and immunostimulant benefits to aquatic animals [14,15].
Several species are also able to synthesize EPA, DHA, and pigments (e.g., carotenoids)
de novo. Environmentally, microalgal production can support significant expansion of global
photosynthetic primary production by farming on nonarable land or along coastal environments,
reduce water demands and recycle nutrients by use of seawater and/or wastewater, and
convert atmospheric CO2 into nutrient-rich renewable feedstocks for high-quality feeds and
animal health products. This provides the basis for a circular aquaculture industry as a part of
a greater circular bioeconomy [16] and supports several UN Sustainable Development
goalsii, particularly #1-No Poverty, #2-Zero Hunger, #12-Responsible Production and
Consumption, and #14-Life Below Water. Integrating algal production systems into
aquaculture can create resource-efficient, ecofriendly value chains with a low carbon footprint
[17] via coproduction of biobased and biodegradable products (i.e., a biorefinery approach)
[16] while providing healthy diets and ecosystem services for the aquaculture industry and society
more broadly [18].

This review highlights key advances in the development of microalga-based aquaculture feeds,
essential to the development of a sustainable aquaculture industry.

Whole-Cell Feeds
Cultivated microalgae (e.g., Chaetoceros calcitrans, Isochrysis galbana, Skeletonema costatum,
Pavlova lutheri) are used as hatchery and nursery feeds for shrimp, bivalve mollusks, and larval
finfish and help to bring broodstock into spawning condition [19,20]. They are also fed to zoo-
plankton, including rotifers, copepods, and brine shrimp (Artemia sp.), which in turn are fed to ju-
venile finfish and shellfish, including crustaceans (Table 1).

The demand for live algae has most commonly been met by on-farm production. However, such
small and relatively low-productivity systems have resulted in high unit capital and operating costs
and expensive microalgal feeds, estimated at 30–50% of the total fish production cost, depend-
ing on the type of algae and cultivations systems used [21–23].
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Larvae: newly hatched fish. Larvae
grow into fry and then fingerlings, which
are both juvenile fish substages.
Nauplii: larvae of copepods are called
nauplii, which is a plural form of nauplius.
Nursery: a place where juvenile fish are
raised to contribute broodstock
population.
UNSustainable Development goals:
17 global goals were set by the UN in
2015 with the formal name
‘Transforming Our World: The 2030
Agenda for Sustainable Development’.
These goals include Good Health and
Well-Being, Clean Water and Sanitation,
Affordable and Clean Energy, Decent
Work and Economic Growth, Industry,
Innovation and Infrastructure,
Sustainable Cities and Communities,
Responsible Consumption and
Production, Climate Action, Life below
Water, and Life on Land.
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Consequently, there is a growing trend to substitute live algae with more convenient, mass-
produced off-the-shelf feeds including dried algae, concentrated algal pastes, formulated
feeds (including microencapsulated feeds), bacteria, and yeasts [23–27]. Reported disadvan-
tages of substitute hatchery feeds have included settling, aggregation, bacterial degradation,
leaching of nutrients, low digestibility of the cell wall material, cell settling, and disintegration for
dried algae [23,27]. Live microalgae are reported to be superior to other feed substitutes in
terms of the enhanced growth and survival of larvae and nauplii of many species (e.g., bivalves)
[23,28]. For example, the productivity of the Pacific geoduck clam (Panopea generosa) using
spray-dried algae (Schizochytrium sp. and Spirulina sp.) was significantly reduced [28].

Recent improvements in feed technologies based on a better understanding of animal nutrition is
enabling higher substitution of live algae without compromising animal growth and health [23]. For
instance, a 75% substitution of dietary live algae with a formulated feed (MySpatTM) was reported
to achieve the same productivity in the green-lipped mussel (Perna canaliculus), reducing feed
costs from US$221 kg−1 to US$138 kg−1 (conversion factor: US$/NZ$ = 0.68) [21].

High-quality concentrated algal pastes (e.g., Isochrysis sp., Thalassiosira pseudonana,
Tetraselmis sp.) are promising replacements for live algal feeds. Similar growth rates have been
reported for the use of commercial algal concentrates and live algae in the production of sandfish
larvae (Holothuria scabra) [29] and winged pearl oysters (Pteria penguin) [30]. Typically, algal con-
centrates are produced by dewatering algae to a thick slurry (e.g., centrifugation, flocculation, fil-
tration) and adding preservatives (e.g., antioxidants, food acids, cryoprotectants) [31]. These
nonviable, intact, whole-cell, natural feed preparations are designed to retain nutrients and impor-
tant characteristics (e.g., cell size, cell chemistry) beneficial for the feeding of early-life-cycle
aquatic animals [19]. The cost of commercial concentrates ranges from US$200 to US
$620 kg−1 [31]v, presumably due to the additional processing steps required and the market
dominance of relatively few suppliers. Advanced large-scale microalgal production systems inte-
grated with good cell harvesting, preservation, and storage and efficient distribution networks
offer significant potential for cost reduction [22,31].

Formulated Feeds
Analysis of commercially produced ‘complete diets’, designed to supply all of the necessary
ingredients for optimal fish growth, reported that these aquafeeds typically contain protein (18–
50%), lipids (10–25%), carbohydrates (15–20%), ash (b8.5%), phosphorus (b1.5%), water
(b10%), and vitamins and minerals (trace) [32]. Feed formulations are designed to optimize the
feed conversion ratio (FCR), which is important to boost fish production. This provides the
added benefit of minimizing fish wastes and may be used as an effective tool to reduce life-
cycle greenhouse-gas emissions of fish production [33].

Technically, aquafeeds within the above compositional ranges can be produced entirely from
microalgae; however, other factors affecting the FCR to be considered include feed attractive-
ness (e.g., smell, taste), accessibility (e.g., cell/pellet size, buoyancy), and nutrient availability
[34]. The high cell-wall recalcitrance of most microalgae is detrimental to digestibility and assim-
ilation of intracellular nutrients, especially for carnivorous fish with a short digestion phase (e.g.,
salmon) [35]. Disruption of the cell wall of Chlorella vulgaris and Nannochloropsis gaditana has
been reported to improve nutrient digestibility (especially for essential amino acids, carbohy-
drates, and starch) in Atlantic salmon (Salmo salar L.) [36] and protein and fat digestibility in Nile
tilapia (Oreochromis niloticus) [37] but may cause the release of antinutritional compounds [38].
Cell-wall disruption can be achieved usingmechanical, thermal, chemical, enzymatic, microwave,
or ultrasound treatment [39], but the added benefits must be balanced with the costs.
Trends in Plant Science, October 2019, Vol. 24, No. 10 961
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Currently, the relatively high cost of microalgae compared with common bulk meal ingredients
(Figure 2) limits their use to high-value fish production [40]. Barone et al. estimated that algal
meal prices of US$2.65 kg−1 and US$0.66 kg−1 were needed to replace fishmeal and soybean
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Figure 1. Comparison of Alternative Aquaculture Feeds with the Fish Meal (FM) Standard for (A) Protein and (B) Fat and (C) Maximum FMReplacement
% in Tilapia (Oreochromis sp.) Diets [86–100].
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Table 1. Major Microalgal Species and Their Applications for Aquaculturea

Whole-cell feed Formulated feed ingredient Green pond farming Animal
health

To aquatic animals To zooplankton feed for finfish larvae and
juvenile crustaceans

Algal
meal

Omega-3 Pigments

Microalgal species Crustaceans
(larvae)

Bivalves
(all stages)

Urchins
(larvae)

Rotifers
(all stages)

Copepods
(all stages)

Artemia
(all stages)

Finfish, crustaceans
(growout)

Salmonids,
crustaceans

Freshwater
fish, crustaceans,
finfish larvae

All aquatic
animals

Nannochloropsis
sp.Eu

– – – • – – – – – • •

Chlorella sp.Ch – • – • – • • – – • •

Pavlova lutheriHa – • – • – • • – – – –

Isochrysis sp.Ha – • – • • • – – – • –

Tetraselmis sp.Ch • • – • – • – – – • •

Chaetoceros sp.Di • • – – – • – – – • –

Skeletonema sp.Di • • – – – – – – – – –

Thalassiosira sp.Di • • – – • – – – – – –

Haemotococcus
pluvialisCh

• – – – – – • – • – –

Nitzschia sp.Di – • • – – • – • – – –

Navicula sp.Di – – • – – – – – – – –

Amphora sp.Di – – • – – – – – – – –

Phaeodactylum
tricornutumDi

• • – – – • • • – – •

Spirulina and
Arthrospira sp.Cy

• • – • – • • – – – •

Dunaliella sp.Ch – • • • – • • – • – •

Schizochytrium
limacinumSt

– – – • – • • • – – –

Scenedesmus sp.Ch – – – – – – • – – – –

Chlamydomonas
sp.Ch

– – – • – • – – – – •

Euglena sp.Ch – – – – – – – – – – •

Df, dinoflagellate; Eu, Eustigmataceae; Ch, chlorophyte; Ha, holotype; Di, diatom; Cy, cyanobacteria; St, stramenopile.
aCompiled from [22,27,101], except copepods [102], omega-3 [103], and animal health (see also ‘Natural Immunostimulants and Growth Promoters’ [57–68]).
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Figure 2. Price Comparison of Fishmea
Alternatives as Formulated-Feed
Ingredients. All prices were obtained from
various suppliers on vii as of September to
December 2018.
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meal, respectively, in the diets of tilapia (a relatively low-value fish) [41]. Given that algae are ex-
pensive to produce, their use as bulk ingredients for formulated feed production is likely to require
improved production efficiency and further cost reduction through the use of biorefinery ap-
proaches [17]. However, the wide range of pigments, fatty acids, vitamins, minerals, and bioac-
tives of microalgae make them excellent high-value nutrient additives and supplements to
blend into a wide range of aquafeeds [35]. For instance, a 0.5–2.5% Spirulina sp. supplement im-
proved growth rates, meat quality, coloration, and health, while reducing wastes [42].

Pigments
High-value carotenoids, such as β-carotene and astaxanthin, are widely used in aquaculture for
their potent coloring and antioxidant properties, both of which can significantly improve the quality
and value of the farmed fish (e.g., salmon, Asian tiger shrimp) [43]. The microalga
Haematococcus pluvialis and Dunaliella salina synthesize large quantities of natural astaxanthin
and β-carotene de novo (3–7% and 3–13% w/w, respectively) [44,45]. Estimated market sizes
and product prices for common pigments produced by algae and their competitors are summa-
rized in Table 2. Presently, cheaply synthesized pigments produced from petrochemicals ac-
count for almost all astaxanthin and β-carotene used as aquafeed additives [46].

Omega-3 Fatty Acids
Microalgae typically have a total lipid content ranging from 20% to 70% dry weight [13,47]; the
long-chain polyunsaturated fatty acids DHA and EPA can range from 20% to 45% for high-yield-
ing strains [48]. Their role in healthy aging, cardiovascular function, immune health, and the pre-
vention of various chronic diseases [49] has led to a daily recommended intake of 500 mg of
EPA/DHA for humans [50]. Fulfilling this global demand would require ~1.4 million tonnesi

year−1. Currently, production is ~15% of this quota, highlighting a key supply-and-demand con-
straint for human and aquacultural nutrition [50]. Moreover, increasing replacement of fishmeal
and fish oil with plant-based ingredients is compromising the EPA/DHA levels and nutritional qual-
ity of farmed fish. For instance, it was found that farmed Scottish Atlantic salmon fed with an in-
creasing level of plant-based feed over a 10-year period had reduced EPA/DHA levels in fish
meat by 50% [51].

Microalgae (as feed and foods) present a potential solution to increased global omega-3 supply.
However, a path to market-price reduction (Table 2) requires rapid scale up of advanced
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production technologies (ideally on nonarable land or in the oceans to maximize sustainability)
and high-quality processing to preserve the biological activity (e.g., protection against oxidation)
of EPA and DHA.

Animal Health and Growth
Aquatic diseases caused by viruses, bacteria, and other pathogens are a major concern for
the aquaculture industry [52]. Industry-wide losses to aquatic diseases reportedly exceed
US$6 billion year−1 [53]. In shrimp farming, losses of over 40% of global production capacity
(NUS$3 billion year−1) can occur [52], mostly incurred by viral (~60%) and bacterial (~20) diseases
[52]. Disease management has traditionally been based on the use of antibiotics or other chemo-
therapeutics [54], which are unable to treat viral infections and can increase pathogen resistance.
Moreover, they can cause negative environmental impacts and are consequently subject to strict
regulation [55].

To this end, the development of animal therapeutics – both natural and engineered – provides a
significant high-value market opportunity for microalgae. Although not a panacea, certain
microalgae have been reported to contain specific natural immunostimulants and antimicrobial
compounds that increase resistance to aquatic pathogens [56].

Natural Immunostimulants and Growth Promoters
Numerous algal species (e.g., from the genera Tetraselmis, Euglena, Chlorella, and Spirulina) and
algal compounds, such as sterols and unsaturated fatty acids, are reported to possess antibac-
terial activity in vivo and in vitro against several Vibrio species and other fish and shrimp patho-
gens, leading to improved survival rates [57–60]. Dietary Chlorella or Euglena supplementation
was also shown to improve the growth performance, as well as the adaptive and innate immune
response, of Gibel carp (Carassius auratus gibelio), the freshwater fish rohu (Labeo rohita), and
the giant freshwater prawn (Macrobrachium rosenbergii) by increasing their resistance to the
disease-causing bacterium Aeromonas hydrophila [61,62]. Nannochloropsis, Phaeodactylum,
and Tetraselmis microalgal supplementation reportedly enhance defense activity in gilthead
seabream (Sparus aurata) [63]. Spirulina has been reported to increase immune responses in
carp (Cyprinus carpio) against Aeromonas hydrophila, in Nile tilapia (O. niloticus) against Pseudo-
monas fluorescence, and in great sturgeon (Huso huso) against Streptococcus iniae and other
bacteria [64–66]. In addition, dietary application of Dunaliella salina to Asian tiger shrimp
(Penaeus monodon) improved their reported survival rate when challenged with white spot syn-
drome virus (WSSV) [67], making D. salina an interesting candidate for recombinant production
of disease-specific immunostimulants. The benefits of these different microalgae suggest that
there may be some broad-based rather than highly specific advantages to fish health, such as im-
proved microbiome composition [68].

Recombinant Therapeutics
In recent years, microalgae have been genetically engineered to produce a range recombinant
bioactives, such as immune stimulators, vaccines, growth promoters, and antimicrobial agents
for humans and animals [56].

Currently, recombinant products require extraction and purification for therapeutic use. Changes
in the regulatory approval and market acceptance, however, of orally delivered alga-based ther-
apeutics (in inactivated or live cells) could provide a much-needed low-cost diseasemanagement
approach for the aquaculture industry. Furthermore, they could reduce the need for
intraparenteral/intramuscular injection of vaccines, which are labor intensive, unable to be admin-
istered in high throughput to small/juvenile fish or crustaceans, and cause stress in animals,
Trends in Plant Science, October 2019, Vol. 24, No. 10 965



Table 2. Microalgal Products and Meals Used in Aquaculture Feeds, Market Price, and Total Market Valuea

Commercial
product

Type Origin Approximate price
(US$ kg−1)vi

Market size
(US$ million)

Astaxanthin
(10% purity)

Xanthophyll
carotenoid

Petrochemicals (synthetic) 290 553.6
(2017)vii

Haematococcus pluvialis
(microalgae)

530

Fucoxanthin
(10% purity)

Laminaria sp. (macroalgae) 27 95 (2016)viii

β-Carotene
(10% purity)

Carotene
carotenoid

Petrochemicals (synthetic) 46 432.2
(2015)ix

Blakeslea trispora (mold) 48

Dunaliella salina (microalgae) 65

Phycocyanin
(E18 grade)

Phycobiliprotein Spirulina sp. (cyanobacteria) 160 112.3
(2018)x

DHA powder
(N40% content)

Omega-3 fatty
acid

Schizochytrium sp.
(microalgae)

50 34 700
(2016)xi

aPrices were sourced from various suppliers on vii between September and December 2018.
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sometimes reducing growth [67]. Consequently, there is considerable scope to improve the
range and quality of alga-based oral therapeutic aquaculture feeds. Significant milestone studies
in aquaculture for recombinant microalga-based oral therapeutics include: (i) increased survival of
medaka fish that were fed with Nannochloropsis oculata expressing an active broad-spectrum
antimicrobial peptide [69]; (ii) improved resistance to WSSV in shrimp that were fed with
D. salina expressing WSSV antigens [70]; (iii) an improved immune response in juvenile rainbow
trout following oral vaccination with Chlamydomonas reinhardtii expressing an antigen derived
from Renibacterium salmoninarum, a causative agent of bacterial kidney disease [71]; and (iv)
partial protection of shrimp against yellow head virus (YHV) after feeding on a transgenic alga ex-
pressing double-strand RNA against the virus [72].

Green Water Aquaculture
Freshwater fish (e.g., carp, tilapia) constitute the largest aquaculture sector [18] and thus are an
important target for sustainable aquafarming practices.Greenwater aquaculture is an effective
low-maintenance and low-cost technique used throughout Southeast Asia. Constructed ponds
are fertilized (e.g., chemical, manure) to provide a ‘nutritious soup’ that promotes the growth of
naturally occurring or inoculated algal populations and alga grazers (e.g., bacteria, fungi,
protozoa, zooplankton), which together form nutrient-rich biomass [18]. The farmed animals di-
rectly graze on the available biomass, significantly reducing the reliance on commercial aquafeeds
of fish and shrimp production [18]. Grazing, in conjunction with water recirculation systems and
fertilization control, help to maintain a beneficial microbial composition and a healthy aquatic
environment [18]. Some microalgae also supplement atmospheric CO2 with organic carbon,
which can ensure optimal C:N ratios in biomass, reduce biological oxygen demand, and maintain
adequate dissolved organic nitrogen levels.

Low-water-exchange green water farming has enabled successful larval rearing of several com-
mercially important Australian estuarine fish and crustaceans due to optimal nutrition, lower stress
levels, improved environmental conditions (e.g., turbidity, light scattering, visual contrast), better
water quality, the presence of chemical and digestive stimulants, and the beneficial bioactive
properties of microalgae for the grown larvae [73]. Compared with clear water aquaculture,
green water ponds have shown high inhibition of fish and shrimp pathogens [73]. For Asian
tiger shrimp, substitution of fishmeal and oil with green water biomass reportedly yielded addi-
tional growth [74]. The benefits of green water appear to be the provision of a high-quality feed



Outstanding Questions
How can nutrient composition and di-
gestibility be improved for plant-based
aquaculture feeds?

How can plant-based aquaculture
feeds be made more effective, espe-
cially for carnivorous fish such as
salmon?

How will the increasing demand for
omega-3 oils affect the aquaculture
feed market?

Which technologies and approaches
can best drive down the cost of
microalga production?

Can algal water treatment systems be
coupled to aquafeed production to en-
able a circular industry?

Could advances in green pond tech-
nology permit increased sustainable
production to meet future demands?

Would regulators permit oral alga-
based vaccine feeds to prevent dis-
ease loss?

What policies can be implemented to
increase the utilization of sustainably
produced aquaculture feeds?
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and probiotics and the fact that healthy ecosystems support disease suppression by preventing
the proliferation of opportunistic pathogens [74,75].

It is estimated that 30% of global tilapia production is supplied using ‘natural food’ [18]. The quan-
tity of microalgae consumed in ‘green water’ aquaculture has been estimated to be 240 million
tonnes annually on a fresh-weight basis, more than the total aquaculture production [4,18].

Integrated Multitrophic Aquaculture Systems
Green water applications have significant scope to become a cornerstone of multitrophic inte-
grated aquaculture (IMTA) systems [76], which can provide economic and environmental sustain-
ability through cocultivation with biofilter organisms from different trophic levels (not only algae
but also invertebrates; e.g., bivalves, sponges). These organisms can support circular nutrient
flows in closed systems, and so water recycling and waste treatment, which incur significant
costs to aquaculture. For example, a pilot facility in Australia used sand-filtered ponds stocked
with polychaetes to remediate wastewater from adjacent shrimp production ponds. The poly-
chaetes graze on phytoplankton grown on nutrient-rich wastewater, providing a simple, low-en-
ergy, efficient strategy to ‘harvest’ the microalgae by conversion into easily harvested animal
biomass. Polychaetes are valuable sources of biomass as well as protein for animal feeds, thus
creating a value chain incorporating shrimp, bioproducts, and low-cost water treatment [77].

Further large-scale integration of aquaculture with conventional agriculture (e.g., tilapia farming in
rice paddy fields) [78] and aquaponics (e.g., cocultivating tilapia with lettuce) [79] may enable
these benefits at the global scale, supporting a sustainable circular bioeconomy.

Biofloc Technologies in Aquafeeds
Expanding on the principles of green water farming, biofloc technologies are rapidly emerging as
a sophisticatedmethod of production of sustainable high-value ‘biofloc meal’ used in commercial
aquafeeds [80]. Typically grown in closed photobioreactors, commercial feed suppliers are ad-
vancing understanding of the microbial ecosystems required to develop precise methods to pro-
duce biofloc-based‚ fish-free marine microbe feeds. Products entering the market include the
Novacq™ biofloc supplement (grown on cheap agricultural waste) for salmon, barramundi,
shrimp, and oysters [25]. Novacq™ reportedly increased shrimp growth by up to 50% compared
with a standard reference diet of the same basic nutritional specifications [81]. Alternative biofloc
products have also reported significant improvements in whiteleg shrimp (Litopenaeus vannamei)
cultivation [82–84].

Concluding Remarks
Given the rapid expansion of the aquaculture sector, sustainable aquaculture feed solutions that
form part of an expanding circular bioeconomy are required to enhance global sustainability.
Microalgae have already been demonstrated to be a valuable source of key nutrients for high-
quality fish feeds, including essential amino acids, omega-3 fatty acids, EPA and DHA, pigments,
and antioxidants (e.g., carotenoids). Novel alga-based aquaculture feeds have the potential to
completely replace fishmeal and fish oil; the current gold-standard, but unsustainable, feed
source of the industry. Total global replacement of fishmeal with microalgae would reportedly re-
quire US$30 billion of capital and 111 000 ha of land, providing a net income of US$6.5 billion with
the additional benefit of removing pressure on wild pelagic fish populations [85].

Analysis of the use of microalgae as whole-cell feeds, formulated feeds, animal health and growth
supplements, and delivery systems for aquaculture therapeutics as well as biofloc-based feeds,
IMTA systems, and green pond approaches shows significant opportunities for microalgae to
Trends in Plant Science, October 2019, Vol. 24, No. 10 967
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play a major role in aquaculture’s ‘blue revolution’ and reduce its environmental footprint, including
habitat destruction, water pollution, eutrophication, biotic depletion, ecological effects, and disease
outbreaks. However, major advances are required, including the establishment of expanding algal
collections for breeding purposes, their genome sequencing, identification of species and polyculture
optima, and the development of systems that can support multitrophic and multilayered production.
Significant additional advances are likely in feed formulations that enhance the microbiome, the or-
ganism, and system health and productivity. Substantial cost decreases through the discovery or en-
gineering of low-cost technologies and nutritious strains with high digestibility, as well as the
development of biorefinery approaches to maximize value from microalgal biomass, will allow full
market adoption of microalga-based aquaculture feeds (see Outstanding Questions).
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