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16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not
been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based
on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units
(OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach,
delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was
generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A
relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a
large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e.,
variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven
sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the
type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing
conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene
amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective
richness to facilitate the comparison of alpha-diversity across studies.
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INTRODUCTION
Since the late 2000s, high-throughput sequencing of 16S rRNA
gene amplicons has become the most popular method for rapid
analysis of the diversity and composition of complex microbial
communities [1]. Despite its popularity and usefulness, the
method is prone to technical artifacts at various levels of the
workflow, from sample processing to data analysis. For the latter,
one common approach that has been used for decades [2] and is
included in many freely available processing pipelines [3, 4]
consists of building clusters of sequences representing single
microbial entities, also known as operational taxonomic units
(OTUs), at a defined level of sequence identity determined by the
user (usually >97% used as proxy for species-level diversity) [5].
Other strategies, such as exact/amplicon sequence variant (ASV)
analysis [6], are available, but do not replace the relevance of
OTU-based approaches, as both can be applied in a synergistic
manner and generate complementary readouts. Importantly,
diversity measures derived from both ASV- and OTU-based
datasets are strongly influenced by the choice of parameters
during analysis. Lack of standardization has led to inconsistent

results and confusion in the field, such as with estimates for the
number of bacterial species in the human intestine ranging from
a few hundred to several thousand [7, 8]. Reference studies based
on low-error amplicon analysis protocols or shotgun metage-
nomics suggested the detection of 150–200 species in one
individual sample, albeit based on sample size <200 [9, 10].
Despite the widespread use of 16S rRNA gene amplicon
sequencing approaches, it is still unclear which thresholds of
occurrence are most suitable to help eliminating falsely detected
taxa, hereon referred to as spurious taxa. A widely used strategy
to exclude spurious taxa is to remove so-called singletons,
defined as those molecular species represented by only one
sequence across all samples analyzed. However, this approach is
extremely sensitive to several factors, such as the number of
samples in the dataset and sequencing depth achieved, and its
suitability for removing spurious taxa has not been rigorously
evaluated.
In the present study, we assessed filtering thresholds suitable

for excluding spurious taxa from high-throughput 16S rRNA gene
amplicon datasets. We used mixtures of known bacteria both
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in vitro (mock communities) and from gnotobiotic mice to
determine a consensus threshold. In addition, we studied the
effect of different filtering approaches on final readouts using
both literature datasets as well as in-house sequence data
generated by three independent sequencing facilities. We also
investigated the occurrence of spurious taxa across a range of
ecosystems to identify their potential origin. Of note, our purpose
is neither to set rules that should be blindly followed by all nor to
refute data published in the literature. Filtering strategies
necessarily depend on the specific aims of a given study and
the type of samples analyzed. Rather, we aim to draw attention to
the fact that inadequate filtering of spurious taxa can easily lead to
false interpretations that rapidly spread throughout the scientific

community and beyond, and that this problem may be largely
mitigated by easily implementable analysis practices.

METHODS
Datasets and samples
A schematic view of the main experiments included within the present
study is provided in Fig. 1.
To determine filtering cutoffs, two types of reference communities were

used: in vitro mixtures of known bacteria (mock communities) and in vivo
communities from gnotobiotic mice, i.e., ex-germfree mice colonized with
defined sets of known bacteria (Fig. 1a). Seven different mock communities
from published studies with raw sequencing data available and two
additional in-house generated datasets were used (Table 1). This work was

Fig. 1 Schematic overview of the work. a The use of reference communities of microbes in vitro and in vivo using data from the literature or
generated in-house and analyzed using different bioinformatic pipelines allowed precise analysis of the occurrence of spurious taxa.
b Additional experiments using cecal contents from germfree mice in combination with DNase pre-treatment and mock DNA spiking were
performed in a second sequencing lab to test effects of the matrix background on analysis outcomes. c Several human fecal samples stored
under different conditions and processed in triplicates in different sequencing runs allowed assessing the reproducibility of microbiota
profiles generated by high-throughput 16S rRNA gene amplicon sequencing following different filtering thresholds to remove spurious taxa.
d Sequencing of a mock community and a soil sample, including several replicates and sequencing runs, followed by data analysis in a third
facility were performed to validate findings. All technical details are given in the Methods section.
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complemented by the analysis of amplicon datasets generated from fecal
samples of gnotobiotic mice colonized with four different mixtures of
bacteria (Table 2).
To analyze the impact of free DNA removal on data outcome (Fig. 1b),

the cecal contents from three germfree mice were divided into two equal
portions and processed with or without the iQ-Check Free DNA Removal
Solution according to the manufacturer’s protocol (Bio-Rad Laboratories
GmbH, cat. no. 3594970). After treatment, the solution was inactivated by
heating (95 °C, 15 min). The DNA-extraction protocol described below in
the section “Sample processing for sequencing at ZIEL and RWTH” was
then used. Prior to library construction and sequencing at the RWTH
Aachen, 20 ng of the ZymoBIOMICS DNA Standard (Zymo Research Europe
GmbH, cat. no. D6306; 8 bacterial target species) was added to 1 µL of the
DNA extract from germfree caecal content whenever appropriate. Besides
the usual sequencing blanks described below, additional negative controls
included the DNA samples from germfree caeca (both with and without
DNA treatment) without addition of the ZymoBIOMICS DNA Standard. The
latter was also sequenced as such to obtain a reference profile, including
five different sequence cluster densities to assess the impact of sequencing
depth on the occurrence of spurious taxa.
To further analyze the impact of different filtering strategies on data

processing outcomes, two comprehensive studies with open access to
their sequence data [11, 12] and data from six human fecal samples
generated in multiple sequencing runs at the Core Facility Microbiome of
the ZIEL Institute for Food & Health (Freising, Germany) were used (Fig. 1c).
In order to validate findings in a third sequencing facility, amplicon

datasets from one mock community and a peat soil sample were
generated at the Joint Microbiome Facility of the Medical University of
Vienna and the University of Vienna (JMF) (Austria), including multiple
replicates and sequencing runs (Fig. 1d).

Sample processing for sequencing at ZIEL and RWTH
DNA extraction and library preparation of mock communities and samples
generated in the present study were performed as described previously
[13]. Briefly, DNA was purified on columns (Macherey-Nagel; NucleoSpin
gDNA Clean-up, cat. no. 740230.250) after mechanical lysis (bead-beating)
and the V3-V4 region of 16S rRNA genes was amplified in a two-step
approach (ZIEL, 15+ 10 cycles; RWTH, 15+ 15 cycles) [14] using primers
341F and 785R [15] following a combinatorial dual (CD) indexing strategy.
Libraries were purified using magnetic beads (Beckman Coulter), pooled in
equimolar amounts and then sequenced in paired-end mode (2 × 275 nt)
using the v3 chemistry on an Illumina MiSeq following the manufacturer’s
instructions. The platforms were semi-automated (Biomek4000 pipetting
robot, Beckman Coulter) to increase reproducibility. Moreover, the
workflow systematically included two negative controls (a DNA-
extraction control, i.e., sample-free DNA-stabilization solution, and a PCR
blank, i.e., PCR-grade water as template) for each 46 samples sequenced.

Sample processing for sequencing at JMF
DNA extraction and library preparation were performed as described
previously [16]. Briefly, mock communities were ordered as extracted DNA

Table 1. Mock communities used in the present study.

Name Seq.
facilityb

Gene
region

Replicates No.
species

No. raw
reads

No. sequences
after
processing

Total no. taxad

(no filtering)
1st spurious
taxond (% rel.
abundance)

Reference

Mock-1 See ref. V4 1 27 153,841 140,397 432 0.007 [50]

Mock-2 See ref. V4 1 58 593,868 578,569 761 0.439 [51]

Mock-3 See ref. V4 1 21 1,012,097 453,215 1081 0.031 [52]

Mock-4 See ref. V4 1 14 169,516 159,352 417 0.020 [53]

Mock-5 See ref. V4 1 21 613,091 108,414 802 0.439 [52]

Mock-6 See ref. V4 1 21 602,819 231,685 732 0.160 [52]

Mock-7 See ref. V4 1 20 306,773 42,746 95 0.008 [40]

Mock-TUM 1 V3-V4 7 13 25,640 ± 8516 19,882 ± 8163 77 ± 15 0.130 ± 0.138 This study

ZymoBIOMICS
(cat. #D6300)a

1 V3-V4 7 8c 67,465 ± 31,752 52,079 ± 24,759 177 ± 33 0.059 ± 0.026 This study

ZymoBIOMICS
(cat. #D6311)a

2 V3-V4
and V4

25 8c 16,093 ± 9319 14,383 ± 9083 17 ± 15 0.106 ± 0.085 This study

In case of replicates, data are shown as mean ± SD.
The sequences of all species included in the respective mock communities are available via the project-specific data repository: https://doi.org/
10.5281/zenodo.4837436.
aWhile D6300 corresponds to an evenly distributed mixture of the microbes, D6311 is a log-distributed mixture of DNA from the same microbes.
bFor studies from the literature, please refer to the corresponding listed reference. For in-house generated data in this study: 1, ZIEL Core Facility
Microbiome, TU Munich, Freising, Germany; 2, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna (JMF), Austria.
cBacterial species only. The mock community includes also two yeast species not considered in the present study (ten microbial species in total).
dAll values refer to OTUs clustered at 97% sequence identity, with exception of the last mock community analyzed in sequencing facility 2, for which
values refer to ASVs.

Table 2. Gnotobiotic mouse communities used in the present study.

Gene region Replicates No.
species

No. raw reads No. sequences
after processing

Total no. OTUs
(no filtering)

1st spurious OTU
(% rel. abundance)

Reference

GNOTO1 V3-V4 6 7 28,706 ± 4904 25,869 ± 4494 66 ± 4 0.101 ± 0.014 This study

GNOTO2 V3-V4 9 12 30,261 ± 11,434 21,148 ± 8313 172 ± 24 0.009 ± 0.004 This study

GNOTO3 V3-V4 6 6 30,444 ± 42,325 27,632 ± 3563 85 ± 10 0.116 ± 0.016 This study

GNOTO4 V3-V4 7 4 25,217 ± 6514 47,505 ± 6106 68 ± 10 0.249 ± 0.041 This study

In case of replicates, data are shown as mean ± SD.
The sequences of all species included in the respective mock communities are available via the project-specific data repository: https://doi.org/10.5281/
zenodo.4837436.
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standards (Zymo Research, cat. no. D6311), and a peat soil sample was
extracted using a phenol-chloroform extraction method after mechanical
lysis (bead-beating) [17]. The V3-V4 or V4 regions of 16S rRNA genes were
amplified (30 cycles) using primers 341F and 785R [15] or 515F and 806R
[18], respectively, modified with a linker sequence [16] and barcoded (8
cycles) in a CD or unique dual (UD) setup. The barcoded samples were
purified and normalized over a SequalPrep™ Normalization Plate Kit
(Invitrogen) using a Biomek® NXP Span-8 pipetting robot (Beckman
Coulter), pooled and concentrated on columns (Anlaytik Jena). Sequencing
libraries were prepared with the Illumina TruSeq Nano Kit and sequenced
in paired-end mode (2 × 300 nt; v3 chemistry) on an Illumina MiSeq
following the manufacturer’s instructions. The workflow systematically
included four negative controls (PCR blanks, i.e., PCR-grade water as
template) for each 90 samples sequenced.

Data analysis
Raw amplicon data were analyzed using IMNGS (www.imngs.org) [4], a
platform that integrates a UPARSE-based, de novo OTU-picking strategy
[19]. A sequence identity threshold of 97% was used for clustering
sequences. Additional parameters were: barcode mismatch tolerated, 1;
no. of nucleotides trimmed at each the 5′- and 3′-end, 5; trim quality score,
3; max. expected errors, 3; min. read length, 0; max. read length, 600. Data
were first processed without any filtering of OTUs. These primary outputs
were then further processed using the desired filtering cutoffs, i.e., (i) by
removing singletons only (OTUs represented by only one sequence across
all samples), which is a commonly used strategy [20], or (ii) by removing
those OTUs that did not occur at least at a defined relative abundance in at
least one sample (e.g., 0.5% was a threshold we had proposed previously
below which the variation of OTU-specific relative abundances between
replicate samples increased exponentially [21]). Phylogenetic trees of
resulting representative OTU sequences were constructed in FastTree [22].
Whenever appropriate, closed-reference picking was performed in QIIME
v1.9.1 using default settings [3]. Processed data were further analyzed
using Rhea for the generation of diversity and composition readouts [21].
The identity of OTUs (i.e., their match to the reference sequences of species
included in the defined communities) was assessed using BLAST [23],
considering ≥97% sequence identify, ≥90% coverage, and an e value
<0.00001 as positive hits. The taxonomy of spurious OTUs was assigned
using SILVA [24]. Besides the OTU-based approach, the DADA2 pipeline
v1.12.1. was used on data from mock communities and gnotobiotes to
generate ASV with the recommended settings for paired-end sequences
(adjusted options: maxEE, 3.3; truncQ, 3; maxN, 0; truncLeft, 10; truncRight,
20) [6]. Samples processed at JMF were analyzed using DADA2 v1.14.0
following a previously described workflow [25] with pooling for each run
(adjusted options: truncLen, 150 for V4; truncLen, 230 for V3-V4; maxEE,
adjusted for each run).

Large-scale amplicon sequencing studies
All spurious OTUs from the mock communities across ten sequencing runs
were collapsed at 97% sequence identity using UCLUST [5] to remove
redundancy. Samples in IMNGS (build 1905) [4] with unambiguous origin
were grouped into five categories (human, mouse, soil, freshwater, and
marine). All pre-calculated OTUs in the selected IMNGS samples were
searched against the spurious sequences from each run in parallel and
assigned to their best match with identity >97% over 90% of the query
length. Results were merged into an occurrence map of all spurious OTUs
in each IMNGS sample tested. Due to different primers being used across
studies, there is no guarantee of overlap between spurious sequences and
those from IMNGS samples. Hence, IMNGS samples with no hit to any of
the spurious OTUs were not considered as it was unclear if spurious
sequences were indeed absent from these samples or regions simply did
not match. The prevalence of each spurious OTU in all sample categories
was calculated as the percentage of samples in the given category that
were positive at a threshold >0.25% relative abundance. When spurious
OTUs occurred in different sample categories, a Z-test was used to
determine whether sequences could be considered as exclusive to one of
these sample categories (p < 0.05).

Statistics
Unless otherwise stated, values in the text are presented as mean ± standard
deviation. All statistical tests were performed in R, v3.4.0. P values < 0.05
were considered as significant (after adjustment for multiple testing
whenever appropriate using the Benjamini–Hochberg method). For microbial

community analyses, detailed descriptions of statistical tests applied
are provided in the Rhea support information and in the corresponding
scripts (https://lagkouvardos.github.io/Rhea). Sequence counts were normal-
ized according to the minimum sum count across the given OTU table prior
to calculation of alpha-diversity parameters. Beta-diversity analyses
were based on the calculation of unweighted and generalized UniFrac
distances [26, 27].

RESULTS
Filtering threshold for handling spurious sequences
We first used bacterial communities of known composition
(simplified communities) to assess the occurrence of spurious
taxa and to determine at which relative abundances they begin to
appear. To propose a cutoff that is potentially applicable to
different 16S rRNA gene amplicon studies, we included reference
data obtained with different variable regions and sequencing
pipelines and originating from both in vitro an in vivo commu-
nities varying in number and type of species (max. 58) (Tables 1
and 2). To determine a filtering threshold that allowed exclusion of
most spurious taxa, we recorded the relative abundance of the
first spurious OTU occurring in each of the reference community
datasets (Fig. 2a). Median values of approx. 0.12% relative
abundance were observed (Fig. 2b). Besides one outlier in the
mock communities (0.44% relative abundance), all values were
below 0.25% relative abundance.
Without any filtering, sequence clustering generated an average

of 508 ± 355 OTUs (min. 52; max. 1081) per mock community
(10–58 target species in theory) and 105 ± 50 OTUs (min, 55; max.
215) per gnotobiotic community (4–12 target species in theory).
Up to 87% of these OTUs were spurious (i.e., they did not match
the expected classification of species contained in the corre-
sponding artificial community) (Fig. 2c). On average, the propor-
tion of spurious OTUs in both the mock communities and samples
from gnotobiotic mice was slightly lower after removing
singletons, although this did not reach statistical significance
(50.8 vs. 64.3%, p= 0.227; 57.5% vs. 65.7%; p= 0.70, pairwise
comparison by t-test, including Benjamini–Hochberg correction
following ANOVA). Interestingly, the proportion of spurious
molecular species was higher in gnotobiotic mice independent
of filtering (p < 0.001), suggesting that the matrix accompanying
the defined communities (fecal material in this instance)
influences the outcome. Besides the goal of removing spurious
taxa, it is of course important to include as many true molecular
species as possible into the analysis. Even without any cutoff, not
all target species could be detected: the percentage of positive
hits was 94.9% and 92.3% for mock communities and gnotobiotic
mice, respectively (Fig. 2d).
Although the number of spurious taxa decreased drastically (4.0

vs. 50.8% for mock communities and 1.0 vs. 57.0% for gnotobiotes;
p ≤ 0.01) after applying the proposed cutoff of 0.25% relative
abundance vs. singletons removal (Fig. 2c), the number of positive
hits was not affected significantly (87.2 vs. 93.7% for mock
communities and 82.4 vs. 88.7% for gnotobiotes; p > 0.50) (Fig. 2d).
Note that the diversity of reference communities in the
gnotobiotic mice was relatively low (4–12 members; Table 2),
resulting in a marked drop in the percentage of positive hit
(8–25%) when even just one true member is excluded after
filtering because of its low relative abundance (which is an
expectable event considering a classical, exponentially decreasing
distribution of species occurrence in gut environments).
We next employed the widely used ASV analysis approach to

confirm the aforementioned results. Processing of the same
simplified communities generated a total number of 42 ± 25
ASVs (min. 16; max. 98) for mock communities (10–58 target
species) and 14 ± 8 ASVs (min. 4; max. 25) for gnotobiotes (4–12
target species). Altogether, a marked decrease in spurious taxa
was observed compared with OTU clustering, with an average of
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8.6 ± 11.8 and 4.4 ± 6.4% spurious sequences for mock and
gnotobiotic communities, respectively (comparison of purple
box plots in Fig. 2e, top panels, and Fig. 2c). Of note, the DADA2
pipeline used for the ASV approach does not infer sequence
variants that are only supported by a single read (singletons) due
to a lack of confidence in their existence relative to sequencing
errors. Consequently, data corresponding to “no filtering” with the
OTU-based approach were not generated. On average, the first
spurious ASV occurred at a relative abundance of 0.10 ± 0.32%. By
applying the cutoff of 0.25% relative abundance, spurious
sequences were completely removed (except for three outlying
samples), albeit with a slight drop in positive hits for both mock
and gnotobiotic communities (Fig. 2e).
To obtain a more comprehensive view on how filtering

thresholds affect the detection of spurious taxa, all datasets
(mock and gnotobiotic mice) were processed using a range of
relative abundance filtering thresholds (from 0 to 0.5% at
increments of 0.05%) after either OTU- or ASV-based processing
of raw sequence reads (Fig. 2f). These data indicate that filtering
thresholds between 0.1 and 0.3% are appropriate to reduce the

occurrence of spurious taxa to <10% of total OTUs at a loss of
<15% positive hits. It is important to note that our intent is not to
set a strict rule for data processing, and we recognize that filtering
strategies must be adapted in a study-specific manner. Instead, we
aim to suggest best-practice guidelines and raise awareness for
the importance of proper handling of spurious sequences. To
further investigate spurious taxa, the threshold of 0.25% relative
abundance described in the first paragraph was kept for all further
analyses.

Ecology and origin of spurious taxa
To better understand how spurious molecular species arise in
amplicon datasets, we investigated the diversity and origin of
sequences not matching reference sequences from the defined
communities. To this end, we taxonomically classified and
evaluated the occurrence of these sequences in >100,000
IMNGS-derived amplicon data [4]. Approximately half of the
678 non-redundant spurious OTUs belonged to the phylum
Firmicutes, followed by Bacteroidetes and Proteobacteria. Most of
these were characterized by highest prevalence in human- and

Fig. 2 Determination of filtering thresholds using artificial communities of known composition in vitro (mock; n= 9 different types;
21 replicates in total) and in mice (gnotobiotes; n= 4 different communities; 28 mice in total). a Example of the occurrence of all molecular
species detected without filtering in the gut of a gnotobiotic mouse [49]. The arrow indicates the position of the first spurious molecular
species, all following taxa being considered as having a high risk of being spurious (light gray bars in the enlarged inset). b Distribution of the
relative abundances of first occurring spurious molecular species (as shown in panel a) across all mock communities and samples from
gnotobiotes. The orange dashes on the y-axis indicate the consensus threshold of 0.25% relative abundance, above which no spurious taxa
occurred with the exception of one outlier in a mock community at a relative abundance of 0.44%. c Comparison of various standard filtering
cutoffs (see explanations in the text) in terms of spurious taxa (i.e., those molecular species not matching sequences of the known species
contained in the artificial communities). d Corresponding percentages of positive hits retained by the different filtering strategies, with
positive hits being defined as the reference sequences found in the respective amplicon datasets. e Percentage of spurious taxa and positive
hits in the same reference communities using the DADA2 pipeline for analysis based on amplicon sequence variants (ASVs) [6]. f Effect of
filtering thresholds at increments of 0.05% relative abundance on the detection of spurious taxa and positive hits in all mock and gnotobiotic
datasets for OTUs (upper panel) and ASVs (lower panel). Lines correspond to mean values; ribbons represent standard deviations.
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mouse-derived datasets, with values reaching up to 40% in the
thousands of tested samples (Fig. 3a). Over 20% of spurious
molecular species detected in human and mouse samples were
only found in these habitats (Fig. 3b). This distribution implies that
the type of samples multiplexed with target samples within a
given sequencing run (in our case mouse and human gut samples)
greatly influences the occurrence of spurious OTUs in target
samples. Interestingly, >600 of the 678 spurious OTUs occurred in
fewer than five of the ten sequencing runs tested, with
approximately 450 of them occurring in only one run (Fig. 3c).
This observation indicates that the majority of spurious taxa are
sporadic cross-contaminations rather than generalist artifacts

across sequencing runs, suggesting that fully independent
technical replicates would improve data quality. Although most
of the spurious taxa were characterized by relative abundances
between 0.25 and 2% in the IMNGS-amplicon datasets tested, they
represented very dominant populations in a few samples (Fig. 3d).
To test sample matrix effects and the effect of free DNA removal

commonly used for low biomass samples on the occurrence of
spurious taxa, mock community DNA was used in combination
with gut samples from germfree mice that were either pre-treated
for free DNA removal or not (Fig. 1b). While all negative controls
(DNA isolation and PCR blanks, treated and untreated control
germfree samples) generated <100 processed reads, the average
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sequencing depth was 14,129 ± 4,682 for the target samples. The
digestion of free DNA prior to extraction from germfree cecal
contents tended to lower the number of spurious taxa detected;
however, these spurious taxa still represented at least one third of
all OTUs among the three samples tested without relative
abundance filtering (Fig. 3e). Using the 0.25% cutoff provided
the most congruent results with respect to the expected taxa
diversity in the mock community. However, a few spurious taxa
were still present when free DNA removal was employed, and the
number of positive hits tended to be higher than the expected
number of 8 due to the present of satellite OTUs of low
abundance (Fig. 3e).

Inadequate taxa filtering inflates alpha-diversity and increases
heterogeneity
Spurious taxa, such as those considered in the present study, tend
to be low abundant per se: the cumulative relative abundance of
spurious molecular species in the reference communities used
above was approx. 1% on average. Consequently, spurious
sequences are not expected to substantially influence overall
composition data, even though the risk exists that authors draw
attention onto spurious taxa characterized by statistical significant,
yet biologically irrelevant different. In contrast, spurious sequences
can have a major influence on diversity (e.g., richness and
evenness for alpha-diversity and between-sample distances for
beta-diversity), as presented in the next sections. To assess the
effect of filtering thresholds on analysis outcomes, we used
recently published amplicon data from two comprehensive
studies that included a substantial number of samples analyzed
by Illumina sequencing of 16S rRNA gene amplicons and for which
raw datasets could be retrieved from public repositories. The
study by Flores et al. [12] (hereon referred to as Study-1) focused
on dynamics of human body microbiomes over time, collecting
samples weekly from 85 college-age adults over a 3-month period
(in the present work, we focused only on the gut samples). The
second study published by Halfvarson et al. [11] (hereon referred
to as Study-2) focused on shifts in the human fecal microbiota
over time in patients with inflammatory bowel diseases vs.
controls and consisted of 683 fecal samples from 137 individuals.
We emphasize again that the purpose of the present study was
not to confirm or refute data from the literature, but rather to
draw attention to an analysis parameter that can profoundly affect
results. In all the following analyses, outcomes after the common
approach of filtering singletons after de novo OTU clustering were
compared with the 0.25% cutoff introduced above (i.e., keeping
only those OTUs occurring at a minimum relative abundance of
0.25% in at least one sample).
In both Study-1 and Study-2, filtering OTUs using the 0.25%

cutoff led to an approximately two-fold decrease in richness,

resulting in an average number of about 200 observed species per
sample (Fig. 4a). Interestingly, when looking at individual
variations in richness by plotting interquartile ranges (IQR) across
the different time points analyzed in the studies, the 0.25% cutoff
was associated with a significantly lower heterogeneity in richness
(Study-1: IQR= 28.0 ± 17.8 vs. 70.6 ± 34.1, p < 0.001; Study-2:
IQR= 17.0 ± 3.2 vs. 49.0 ± 10.4, p= 2.5 × 10−13) (Fig. 4a). Another
helpful readout of alpha-diversity is the Shannon effective count,
which accounts for the evenness of species distribution and can
be, simply speaking, considered as a proxy for the number of most
dominant species [21, 28]. Altogether, the trend observed for
richness (less heterogeneity after 0.25% filtering) was similar when
considering Shannon effective counts (data not shown). However,
lower effective counts after stringent filtering (0.25%) were not
significantly different for Study-2, showing that Shannon effective
counts can be useful to alleviate the influence of lowly abundant
species.
In addition to these two published studies, which focused on

the analysis of different biological samples (i.e., from multiple
individuals at several time points), we also analyzed triplicates of
six fecal samples from healthy human adults sequenced several
times in-house. This dataset, which consisted of the same samples
sequenced in seven different runs, allowed us to evaluate
technical reproducibility depending on filtering thresholds
(Fig. 1c). Across all runs, the coefficient of variations (CVs)
calculated on richness values among the triplicates of each
sample within a run were on average <5% and lowest when
applying the 0.25% cutoff (Fig. 4b). In contrast, CVs of the richness
within samples across sequencing runs increased to 20% on
average with a peak at 40% when applying singletons filtering,
which dropped to approx. 10% (average) and 30% (maximum)
when applying the 0.25% cutoff (Wilcoxon Mann–Whitney test,
p= 0.004) (Fig. 4b). Similar results were obtained when using an
ASV-based data processing strategy (Fig. 4b). These data clearly
indicate that 16S rRNA gene amplicon sequencing, at least as
performed in our study, generates richness values that vary
markedly between sequencing runs for the same sample,
especially when following a loose taxa filtering strategy such as
singleton removal.
To assess the effect of sequencing depth on alpha-diversity, we

sequenced the ZymoBIOMICS DNA Standard by multiplexing
uniquely barcoded amplicon libraries of this reference mock
community at different cluster densities. Analysis of all molecular
species created after processing without filtering clearly showed
that richness inflated as a function of sequencing depth (Fig. 4c).
In contrast, the count of taxa occurring above 0.25% relative
abundance, referred to as “effective microbial richness” (EMR), was
stable and a better proxy of the true diversity within the reference
community.

Fig. 3 Origin and occurrence of spurious taxa. a Taxonomic profile and ecological distribution. Inner ring: SILVA-based classification of all
non-redundant spurious molecular species at the phylum and family level. Outer colored ring: sample type characterized by the highest
prevalence for the given taxon. Outer bars: corresponding highest prevalence values. Only samples with relative abundances >0.25% for any
given OTU were counted as positive for prevalence calculation. The total numbers of samples considered were: human, 46,153; soil, 29,864;
freshwater, 13,977; mouse, 10,409; marine, 8478. b Distribution of the spurious taxa across sample types. The exclusivity of each OTU for any
given sample type was assessed using a Z-test: those assumed to be non-specific for any given sample type appear in red (p < 0.05). The total
number of IMNGS samples considered for each sample type with at least one of any spurious taxa matching sequences above 0.25% relative
abundance was labeled as “Total” (equal numbers in panel a). The number of samples in each type covered by at least one spurious OTU with
highest prevalence in this sample type was labeled as “Covered” (i.e., the remaining samples in that category contained also at least one
spurious OTU, which was however characterized by highest prevalence in another sample type). c Redundancy of the spurious taxa across
10 sequencing runs. d Violin plots of the distribution of median relative abundances of all spurious molecular species within each sample type
as shown in panel b. The average prevalence of the spurious taxa in each sample category is shown as mean ± SD below the x-axis. e The
ZymoBIOMICS DNA Standard was sequenced as such or in combination with DNA extracts of cecal contents from germfree mice with or
without pre-treatment for free DNA removal as described in detail in the methods. The stacked bar plots indicate the number of spurious taxa
and positive hits in the different sample treatment categories with or without relative abundance filtering following the color codes presented
in the figure panel.
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Between-sample comparisons are influenced by filtering
strategies
We next assessed how filtering influenced beta-diversity analyses. As
in the published studies selected [11, 12], a closed-reference OTU
protocol was also used to obtain reference data to which filtering
strategies after de novo OTU clustering could be compared.
In Study-1, the median unweighted distance across all

individuals was approximately 0.5 after using reference-picking,
including a broad range of within-host temporal variations (e.g.,
some individuals were characterized by more stable profiles than
others) (Fig. 5a; left panel), as observed in the original study [12].

As expected, the strongest effect of filtering strategies was
observed when using unweighted UniFrac distances: singleton
removal was characterized by a higher temporal variation in
profiles (median value of approx. 0.6 vs. 0.3 for the 0.25% cutoff)
(Fig. 5a; middle panel). Notably, using generalized UniFrac
distances decreased the difference between filtering approaches;
however, it also widened the range of individual-specific temporal
variability around the median, potentially enhancing the dis-
criminatory power between “stable” and “variable” individuals
(Fig. 5a; right panel).
In Study-2, one of the main findings in the original work was

that volatility (i.e., variations overtime within individuals) was
highest in patients suffering from Crohn’s disease with an ileal
phenotype who underwent ileocecal resection (ICD-r) [11]. We
confirmed this finding by using reference-based picking and
unweighted distances, as performed in the published manuscript
(Fig. 5b; left panel). However, when applying de novo clustering,
this difference could only be observed when using the 0.25%
cutoff in combination with unweighted distances (Fig. 5b; middle
panel). The absence of significant differences when using
unweighted distances after singletons removal suggests that the
biological signal in this study is overwhelmed by the stochastic
“noise” introduced by spurious molecular species (Fig. 5b; middle
panel). The absence of differences when applying generalized
distances (Fig. 5b; right panel) further suggests that individual-
specific temporal variations are attributable to the presence/
absence of taxa rather than to changes in composition.

Validation studies
To confirm the utility of the 0.25% cutoff inferred from the
aforementioned data generated at the Core Facility Microbiome of
the ZIEL Institute for Food & Health (TU Munich, Germany) and at
the Institute of Medical Microbiology of the RWTH University
Hospital, additional samples were processed and analyzed
independently at the Joint Microbiome Facility of the Medical
University of Vienna and the University of Vienna (JMF).
First, processing of a log-distributed version of the ZymoBIO-

MICS Microbial Community Standard (Zymo Research GmbH)
containing eight bacterial strains confirmed the advantage of
applying the 0.25% filtering approach. Twenty-five replicates of
the same DNA sample were sequenced on five sequencing runs
(1–8 replicates per run) using either the V4 region combined with
CD barcoding or the V3-V4 regions with UD barcoding (two and
three runs, respectively). V4/CD vs. V3-V4/UD yielded 31 ± 16
vs. 8 ± 2 ASVs (min: 13 vs. 5, max: 57 vs. 10), respectively. Spurious
ASVs (i.e., all sequences with a Hamming distance to the reference
>1) were greatly reduced using a 0.25% filtering step, from 73 ± 8
to 2 ± 2 and from 13 ± 15 to 0 in V4/CD vs. V3-V4/UD, respectively

Fig. 4 Influence of sequence filtering methods on alpha-diversity.
a Richness distribution across all individual samples and time points.
The bar plots show interquartile ranges (IQR=Q3–Q1) of individual
samples (rows) as a proxy for richness variation across the various
time points of a given sample. IQRs were ranked by decreasing
values after applying the 0.25% cutoff. Colors are: purple, singleton
removal; green, 0.25% cutoff filtering (i.e., keeping only those
molecular species occurring in at least one sample at a relative
abundance >0.25%). b Coefficient of variations calculated on
richness values obtained from six fecal samples each sequenced in
triplicates in seven different sequencing runs. Sequencing reads
were processed using either an OTU- or ASV-based approach (left or
right box, respectively). Within runs: variations across triplicates
within any given sequencing run. Across runs: variations between
the same samples included in the different runs. c Richness and
effective microbial richness (see definition in the text) in the
ZymoBIOMICS DNA Standard at increasing sequencing depths
(x-axis).
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(Fig. 6a). This occurred at a loss of 15% true taxa in the case of
V4/CD while no change was observed with V3-V4/UD (Fig. 6b). As
the highest relative abundance reached by any spurious ASV was
0.28% and the true taxa detected corresponded to dominant
members of the standard community, the cumulative relative
abundance of true taxa was high (>98%) in all cases (Fig. 6b).
Second, peat soil DNA [17] was analyzed to confirm suitability of

our filtering approach for non-gut samples. One identical DNA sample
was sequenced on three different runs (3–5 replicates per run) using
primers 515F/806R (V4 region) and CD barcoding. The ASV table was
rarefied to the minimum sum count (9104) and analyzed with or
without filtering (i.e., only ASVs observed at a relative abundance
>0.25% in at least one replicate were kept). Richness was calculated
using ampvis2 [29]. Applying the 0.25% cutoff decreased the number
of observed ASVs from 408 ± 71 to 139 ± 5 and, more importantly, the
IQR from 101 to 7 (Fig. 6b). Unweighted UniFrac distances within and
between runs as calculated using ampvis2 were also compared

before and after filtering. Sequences were aligned using MAFFT [30]
and phylogeny was inferred using FastTree. Whilst the community
makeup in the soil sample varied substantially between sequencing
runs without additional filtering, the 0.25% cutoff reduced this
variation to the level observed within runs without filtering (Fig. 6c).
Replicates within a run were very similar after applying the 0.25%
cutoff. Altogether, these data serve as an independent confirmation
that stringent filtering delivers more stable values obtained for
the exact same sample sequenced in replicates across several
sequencing runs.

DISCUSSION
The goal of our work was to investigate the occurrence of spurious
taxa in high-throughput 16S rRNA gene amplicon datasets. The
findings clearly underscore the need for careful treatment and
interpretation of lowly abundant sequences.

Fig. 5 Effect of sequence filtering methods on beta-diversity outcomes from literature data. Colors are as in Fig. 4. Brown indicates closed-
reference picking. a Overtime variations in microbiota profiles for each individual from Study-1 [12] based on reference OTU-picking and
unweighted UniFrac distances (left; as in the published study), de novo OTU-picking and unweighted UniFrac distances (middle) or
generalized UniFrac distances (right). Bars indicate median distances across all individuals. Individuals were ordered by increasing average
distance using the 0.25% cutoff and generalized UniFrac (right panel). b Differences in the phylogenetic makeup of fecal microbiota as in
panel a for Study-2 [11].
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The advent of high-throughput sequencing has dramatically
expanded our understanding of microbial diversity, but has also lead
to claims that tens of thousands of species inhabit the human
gastrointestinal tract [31] and that sterile organs also have
microbiomes [32], a concept that has largely been dismissed due to
overwhelming evidence to the contrary [33–35]. Here, we show that
filtering sequencing datasets based on the widely used approach of
removing singletons is insufficient to exclude a high proportion of
spurious taxa. Of course, enhancing the filtering stringency by
increasing relative abundance thresholds comes with the risk of losing
true diversity. Hence, analysis strategies should always be adapted to
the main goal of a study, and no single “optimal” threshold can be
defined. It is beyond the scope of the present work to dissect the
contribution of each wet lab and in silico step to the introduction of
spurious taxa into datasets. Nonetheless, we observed that many
spurious taxa most likely originate from samples multiplexed with the
defined communities in one sequencing run, despite the implemen-
tation of multiple negative controls and an automated sample
processing workflow. One cause for spurious sequences, termed
index-hopping, was previously identified to account for 0.47% of
reads, with samples with the fewest reads being affected the most
[36]. As defined in the present study by using defined communities as
references, spurious taxa do not necessarily represent true artifacts
(i.e., sequences not corresponding to real microbes). Remnant DNA in
laboratory materials and reagents [37] or in the feed used for
laboratory animals (including germfree models) do originate from
existing microbes and may give rise to amplification products that
can confound results (especially when the number of PCR cycles are
≥30, as is often used).
There is an obvious need for harmonizing sequencing-based

microbiome studies [38, 39]. Although several research groups
have examined the effect of sequence quality filtering and
sequencing depth [40–44], the influence of lowly abundant,
potentially spurious taxa on readouts has been studied in less
detail. Variations between replicate samples after Illumina-based
amplicon sequencing can be quite high even after singleton
removal [45], and the present study stresses the importance of
benchmarking platforms using reference communities. Filtering
strategies for removal of spurious taxa primarily affect diversity
readouts, especially richness, implying that variations in richness
that have very often been associated with disturbed microbial
ecosystems under disease conditions should be interpreted with
care [46, 47]. Richness estimates are strongly dependent on

parameters set during bioinformatic analysis. Due to the influence
of sequencing depth on measured richness, it is usually normal-
ized for comparison across samples, typically by using the
minimum depth across all samples in the study. However, this
approach does not help when making comparisons between
studies, for which a standardized normalization would be useful.
Technically, all taxa must be counted for the estimation of
richness, but the existence of spurious taxa in sequencing data
requires the implementation of appropriate cutoffs. Legacy has
favored the use of singleton removal before estimating richness.
However, a singleton from a sample with 100 reads should
obviously not be weighted the same as a singleton from another
sample with 100,000 reads. That is why proportional filtering
thresholds have been applied, albeit with marked variations
between studies and with little to no justification. We found that
the majority of spurious molecular species can be effectively
removed by applying a 0.25% relative abundance cutoff. Although
by no means universal, we recommend its usage over singleton
removal prior to alpha- and beta-diversity analyses. Such filtering
is simple to implement and already available in IMNGS (www.
imngs.org).
Although study-specific filtering is effective in reducing the

number of spurious taxa and their effect on diversity measures, its
outcome depends on the number of samples included in the
study (as any molecular species occurring at a relative abundance
above the selected threshold in at least one sample is kept) and
the depth of sequencing per sample. Due to this, alpha-diversity
measures, such as richness, are especially sensitive to the
normalization and filtering applied, thus making it difficult to
compare richness across studies. A sample-specific measurement
of alpha-diversity that takes into account the effect of sequencing
depth and spurious taxa would be very useful for comparative
analysis between studies. We therefore propose the concept of
“EMR,” which is defined as the number of taxa with a relative
abundance greater than a set cutoff (per default 0.25%) in each
microbial profile considered. In other words, EMR is equivalent to
the count of taxa after normalization to 1000 reads and removal of
those occurring below 2.5 counts. Importantly, EMR is unaffected
by sequencing depth or normalization steps (Fig. 4c). Together
with other established alpha-diversity measures such as Shannon
effective counts, EMR is now implemented in Rhea (https://
lagkouvardos.github.io/Rhea) to facilitate robust inter-study
comparisons.

Fig. 6 Validation studies in a fully independent sequencing facility. a Fraction of spurious taxa with (green) or without (violet) applying the
0.25% cutoff displayed according to the targeted 16S rRNA gene regions and barcoding strategy used. b Corresponding fraction of positive
hits (i.e., amplicons matching the reference strains contained in the mock community). c Average and distribution of richness and distance
values between replicates of the same soil sample processed in multiple sequencing runs. ASV amplicon sequence variant, bc barcoding, CD
combinatorial dual, no. number, UD unique dual.
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CONCLUSIONS
Despite the development of new sequencing approaches for
studying microbiomes such as shallow metagenomics [48], 16S
rRNA gene amplicon sequencing is still being used very widely.
Thresholds for filtering lowly abundant taxa in such datasets can
markedly influence the outcome of microbiota analysis, especially
diversity readouts. We strongly recommend applying filtering
strategies that go beyond singleton removal. Applying a minimum
relative abundance threshold between 0.10 and 0.30% is superior
to singleton removal, although study-specific analysis strategies
may be needed depending on, for instance, the type of samples
analyzed and the sequencing depth achieved. “EMR” will help
facilitate the comparison of alpha-diversity across studies.

DATA AVAILABILITY
The 16S rRNA gene amplicon datasets generated in the present study are available in
the European Nucleotide Archive (www.ebi.ac.uk/ena) under study accession number
PRJEB34431 (data from the Core Facility Microbiome of ZIEL) and SRA accession
numbers SRR10688001-37 (data from the JMF) and PRJNA659641 (data from RWTH
Aachen). All scripts and codes used to generate the data in this manuscript can be
obtained at https://doi.org/10.5281/zenodo.4837436.
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