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1  | INTRODUC TION

Death of female germ cells during ovarian development and oo-
genesis is a phenomenon known to scientists since the 19th cen-
tury (Flemming, 1885). It is an evolutionarily conserved event that 
involves invertebrates and vertebrates (Saidapur,  1978), including 
non-human mammals and humans (Krysko et  al.,  2008; Matova & 
Cooley, 2001). Follicular atresia, that is the degenerative process of 
germ cells and their associated somatic cells, is a complex process 
involving apoptosis, a programmed form of cell death whose mecha-
nisms are highly conserved in vertebrates and invertebrates, and are 
characterized by biochemical and structural changes, including chro-
matin condensation, DNA fragmentation, and formation of apop-
totic bodies (Chen & Abrams, 2000; Corriero, Desantis, et al., 2007; 

Gross et al., 1999; Matova & Cooley, 2001; Metzstein et al., 1998; 
Vaux & Korsmeyer, 1999).

In the ovary of the adult nematode Caenorhabditis elegans 
Maupas, 1900, more than 50% of the germ cells are removed by 
apoptosis (Gumienny et al., 1999). Oocyte cell death is triggered 
by specific somatic cells, the so-called sheath cells, that act as 
both germ cell death promoters and dead germ cell phagocytes (Li 
et al., 2012). In the fruit fly Drosophila melanogaster Meigen, 1830, 
each cystoblast undergoes four consecutive mitotic divisions to 
give rise to a cyst of 16 germ cells, one of which develops as an 
oocyte and the others differentiate into nurse cells, which provide 
nutrients to the growing oocytes. Germ-cell death occurs in two 
different phases: during the first phase of yolk uptake by oocytes 
and after the final phase of cytoplasm transport from the nurse 
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Abstract
Atresia of ovarian follicles, that is the degenerative process of germ cells and their 
associated somatic cells, is a complex process involving apoptosis, autophagy and 
heterophagy. Follicular atresia is a normal component of fish oogenesis and it is ob-
served throughout the ovarian cycle, although it is more frequent in regressing ova-
ries during the postspawning period. An increased occurrence of follicular atresia 
above physiological rates reduces fish fecundity and even causes reproductive failure 
in both wild and captive-reared fish stocks, and hence, this phenomenon has a wide 
range of implications in applied sciences such as fisheries and aquaculture. The pre-
sent article reviews the available literature on both basic and applied traits of oocyte 
loss by atresia, including its morpho-physiological aspects and factors that cause a 
supraphysiological increase of follicular atresia. Finally, the review presents the use 
of early follicular atresia identification in the selection process of induced spawning 
in aquaculture and the implications of follicular atresia in fisheries management.
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cells to oocytes that concludes with nurse cell death (Matova & 
Cooley, 2001).

Atresia has been described at all developmental stages of ovarian 
follicles in cyclostomes, in the ovaries of oviparous, ovoviviparous 
and viviparous elasmobranchs, as well as in unyolked and yolked 
ovarian follicles of Teleostei and Chondrostei (Linares-Casenave 
et al., 2002; Mccully Phillips & Ellis, 2015; Saidapur, 1978; Waltrick 
et al., 2017). Follicular atresia of teleost fishes has been described 
as a complex process comprising apoptosis, autophagy—a cat-
abolic process involved in the turnover of long-lived proteins and 
organelles—and heterophagy, that is phagocytosis of egg compo-
nents by granulosa cells acting as macrophages (Cassel et al., 2017; 
Santos et al., 2008; Thomé et al., 2009).

Ovarian follicle atresia has been documented also in amphibi-
ans: in the frog Xenopus laevis (Daudin, 1802), atresia affects mainly 
oocytes during the phase of yolk uptake (Saidapur, 1978 and refer-
ences therein cited; Matova & Cooley, 2001). In reptiles, follicular 
atresia affects all stages of follicle development of many species 
(Saidapur, 1978 and references therein cited), among which the gecko 
Hemidactylus mabouia (Moreau de Jonnès, 1818) (Moodley & Van 
Wyk, 2007), the lizard Sceloporus aeneus Wiegmann, 1828 (Guillette 
& Jones,  1985) and the American alligator Alligator mississippiensis 
(Daudin, 1801) whose atretic follicles are particularly persistent 
and discernible with ovarian ultrasonography (Lance et  al.,  2009). 
Follicular atresia is largely documented in the adult ovary of many 
avian species and morphologically resembles the process described 
in reptiles (Saidapur, 1978 and references therein cited). In chick em-
bryo, follicular atresia affects much more the right ovary, eventually 
destined to total regression (Ukeshima & Fujimoto, 1991). In mam-
mals, atresia is a process of degeneration that affects ovarian follicles 
during perinatal life and postnatal life (Chun & Hsueh, 1998; Foghi 
et al., 1998; Krysko et al., 2008; Quirk et al., 2004; Tilly, 1996a). In 
antral follicles, the atretic process starts at the level of follicular/the-
cal cells and then it involves the oocyte; on the contrary, the atretic 
process seems to directly affect oocytes of primordial/primary folli-
cles (Depalo et al., 2003; Tilly, 1996a). In humans, the ovarian follicle 
reserve is established during foetal life when around two-thirds of 
oocytes are depleted via apoptosis. Subsequently, during adult life, 
this ovarian follicle reserve is gradually reduced by programmed cell 
death of the granulosa cells of the growing follicles (Hussein, 2005).

The aim of the present review was to summarize the existing 
literature on ovarian follicle atresia in fishes, with emphasis on its 
morphological aspects, physiological mechanisms and implications 
in aquaculture and fisheries management.

2  | MORPHOLOGIC AL A SPEC TS OF 
ATRESIA

Morphological aspects of follicular atresia are similar in fish species. 
A widely accepted classification of atretic follicles is the four-stage 
scheme proposed by Hunter and Macewicz (1985) for the northern 
anchovy Engraulis mordax Girard, 1854. The following description is 

based on the latter study and includes also personal observations 
of the authors. The iconography provided in the present review in-
cludes authors’ original micrographs of histological sections from 
greater amberjack Seriola dumerili (Risso, 1810), Atlantic bluefin 
tuna Thunnus thynnus (Linnaeus, 1758) and swordfish Xiphias gladius 
Linnaeus, 1758 ovaries. Unlike Hunter and Macewicz (1985), who 
used the term “atretic oocyte” to refer to the alpha (α) stage of atre-
sia and the term “atretic follicle” to refer to the following stages (β, γ 
and δ), in the present review the term atretic follicle is used through-
out, because the atretic process always involves follicular cells.

2.1 | Alpha (α) stage

In yolked oocytes, the first visible event of atresia is the lysis of the 
nuclear envelope followed by the dispersion of the nuclear content in 
the cytoplasm (Figure 1a,b). The oocyte becomes irregular in shape 
and yolk granules, and lipid droplets start to coalesce under the ac-
tion of hydrolytic enzymes as indicated by the presence of fused or 
expanded globules (Figure  1b). Disappearance of striations due to 
oocyte microvilli withdrawal, progressive interruptions and loss of its 
thickness uniformity characterizes the rapid dissolution of the egg en-
velope (Figure 1c). In follicles at this stage of atresia, a small fraction of 
follicular cells degenerates by apoptosis (up to 10% in curimatã-pacu 
Prochilodus argenteus Spix & Agassiz, 1829 and piau-jejo Leporinus 
taeniatus Lütken, 1875; Santos et al., 2008). Following zona radiata 
fragmentation and breakdown, the invasion of enlarged granulosa 
cells into the oocyte points out the beginning of the second important 
event in α atretic follicles. Yolk granules liquefy, appearing as a uni-
form eosinophilic area in the oocyte cytoplasm (Figure 1d); yolk is then 
phagocytized by the granulosa cells. In this phase, blood vessels pro-
liferate in the thecal layer of the follicles (Hunter & Macewicz, 1985).

2.2 | Beta (β) stage

Following the complete degradation of the oocyte, the follicle enters 
the β stage of atresia (Figure 1e). At the beginning of this stage, fol-
licular cells appear disorganized, some of them showing pyknotic nu-
clei and others containing intracellular, apparently empty vacuoles or 
vacuoles filled by amorphous material. A thin layer of thecal cells and 
blood vessels surrounds the follicular cells. In species whose oocytes 
contain abundant lipid droplets, numerous residual spherical vacuoles 
are distributed throughout the β atretic follicles (Hunter et al., 1986) 
(Figure 1e). At the end of the β stage, the atretic follicle may be in-
volved in one of the three following patterns of degeneration: (i) the 
atretic follicle may progress through the following stages of atre-
sia, the gamma (γ) and the delta (δ) stages; (ii) the atretic follicle can 
completely be reabsorbed at β stage without any further remaining 
structure; (iii) the atretic follicle can directly progress in the δ stage by 
missing out the γ phase. In late β atretic follicles, extensive apoptosis 
of follicular cells occurs (see below) (Morais et al., 2012). A large tran-
sient cavity has been sometime observed inside β atretic follicles of 
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the killifish Millerichthys robustus (Miller & Hubbs 1974) (Dominguez-
Castanedo et al., 2019), which likely results from the extraction of a 
large lipid drop during tissue processing for histological analysis.

2.3 | Gamma (γ) stage

The atretic follicle at the γ stage is smaller than the β stage follicle, 
and the granulosa cells are characterized by the presence of light-
yellow flocculent material in the cytoplasm as well as by irregular 

shape of the nuclei (Figure 1f,g). Phagocytosis of oocyte components 
by follicular cells is still active (Figure 1h). The number of theca cells 
and blood vessels that surround the granulosa cells in the γ stage is 
strongly reduced.

2.4 | Delta (δ) stage

In δ stage atretic follicles, granulosa cells are drastically reduced 
in number and they contain yellow and/or brownish pigments 

F I G U R E  1   Micrographs of ovary sections from adult Atlantic bluefin tuna Thunnus thynnus (a, b, f, g and h), swordfish Xiphias gladius 
(e) and greater amberjack Seriola dumerili (c and d) in different phases of the reproductive cycle. (a) Advanced vitellogenic ovary showing a 
physiological rate of atresia. (b) Extensive atresia of vitellogenic follicles in a specimen that underwent an acute stressing event described in 
Corriero et al. (2011). (c) Early α-atretic vitellogenic follicle (αE) characterized by zona radiata fragmentation and nucleus disappearance. (d) 
Mid (αM) and late (αL) atresia of vitellogenic follicles characterized by progressive zona radiata digestion and yolk granule coalescence. (e) β-
atretic follicle characterized by numerous lipid vesicles and total reabsorption of yolk granules. (f) Early and (g) late γ atretic follicles showing 
a progressive reduction of the number of follicular cells. (h) Particular of a late γ-atretic follicle showing follicular cells in active phagocytosis. 
Haematoxylin-eosin staining. Magnification bars: 400 µm in (a) and (b); 100 µm in (c) and (e); 150 µm in (d); 50 µm in (f) and (g); 30 µm in (h). α, 
α-atretic vitellogenic follicle; β, β-atretic follicle; γ, γ-atretic follicle; arrow, zona radiata breakdown; arrowhead, thecal cell; double arrowhead, 
follicular cell in active phagocytosis; asterisk, residual zona radiata under digestion; curved arrow, blood vessel

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(lipofuscins and melanin) whose appearance shows species-specific 
characteristics (Figure  2a,b). The autofluorescence properties of 
lipofuscin make atretic follicles at this stage easily recognizable from 
the surrounding connective stroma in unstained histological sec-
tions under florescence microscopy (Medina et al., 2021). If follicular 
cells accumulate melanin, δ atretic follicles can become morphologi-
cally similar to melanomacrophage centres (Figure 2b). At the end 
of the atretic process, granulosa cells are no longer surrounded by 
thecal cells and blood vessels (Figure 2a).

Although atresia mainly affects follicles containing yolked oo-
cytes, the occurrence of unyolked atretic follicles has been reported 
in many fish species (Corriero et al., 2003; Hunter & Macewicz, 1985; 
Miranda et al., 1999). Atresia affects previtellogenic oocytes at the 
perinucleolar and lipid-cortical alveoli stage (Figure 2b) and unyolked 
oocytes at the initial stage of atresia show similar morphological 
characteristics to α atretic yolked oocytes but without yolk (Hunter 
& Macewicz, 1985). Further stages of atresia of unyolked oocytes 
have not been described because they are morphologically undistin-
guishable from advanced stages of atretic vitellogenic follicles.

Ultrastructural aspects of follicular atresia have been described 
by Miranda et al. (1999) in the freshwater fish species Astyanax bi-
maculatus lacustris (Lütken, 1875) and Leporinus reinhardti (Lütken, 
1875). The electron microscopy observations provided details on the 

events that characterize early atretic degeneration: disintegration of 
the nuclear envelope and dispersion of chromatin in the ooplasm 
during early atresia; disintegration of organelles and cytoplasmic in-
clusions (mitochondria, annulate lamellae, cortical alveoli, yolk glob-
ules); fragmentation of the zona radiata; progressive convolution; 
and fragmentation of the basal membrane. Miranda et al. (1999) ob-
served oocyte death by necrosis during the initial stages of atresia 
and apoptotic degeneration of follicular cells during the regression 
of the atretic follicle. These observations corroborate the assump-
tion that the first event of the atretic process in fish, that is oocyte 
degeneration, is not mediated by apoptosis.

The biological meaning of the atresia of vitellogenic oocytes is 
related to the recovery of highly energetic moieties, whereas that of 
unyolked follicles is not clear. A possible explanation is that oocytes 
at advanced stages of primary growth that have not been recruited 
into vitellogenesis, once they have finalized the building of the organ-
elle machinery and the synthesis of the membrane receptors needed 
for the uptake of exogenous proteins, cannot survive until the follow-
ing reproductive season. In the daily spawner killifish, atresia affects 
both primary and secondary growth follicles from the onset of sexual 
maturity until fish death, supporting the hypothesis that atresia plays 
a role in selecting follicles able to perform vitellogenesis and subse-
quent stages of development (Dominguez-Castanedo et al., 2019).

F I G U R E  2   Micrographs of ovary 
sections from adult Atlantic bluefin 
tuna Thunnus thynnus (a, c, e and f) and 
swordfish Xiphias gladius (b and d) in 
different phases of the reproductive 
cycle. (a) δ-atretic follicle showing 
yellow-pigmented granules. (b) δ-atretic 
follicle showing cells containing brownish 
pigments. (c) Degenerating unyolked 
follicles incorporated by an atretic 
vitellogenic follicle (arrow). (d) Eosinophilic 
granulocytes at the periphery of an early 
atretic previtellogenic follicle (arrowhead). 
(e) Apoptotic granulosa cell in an early α-
atretic vitellogenic follicle (dashed arrow). 
(f) Apoptotic cells and bodies (dark dots) 
in β and δ atretic follicles. Haematoxylin-
eosin staining in (a–d). Staining of 
apoptotic cells and bodies by the terminal 
deoxynucleotidyl transferase-mediated 
2′-deoxyuridine 5′-triphosphate nick end 
labelling (TUNEL) method in (e) and (f). 
Magnification bars: 50 µm in (a), b, d and f; 
200 µm in (c) and 20 µm in (e). α, α-atretic 
vitellogenic follicle; β, β-atretic follicle; δ, 
δ-atretic follicle; asterisk, atretic unyolked 
follicle

(a)
(b)

(c) (d)

(e) (f)
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As described above, oocyte atresia involves the fragmentation of 
the oocyte envelope to allow follicular cells to enter the oocyte and 
act as macrophages (Corriero et  al.,  2004; Domínguez-Castanedo 
et al., 2019; Linares-Casenave et al., 2002; Passantino et al., 2020; 
Santos et al., 2008). The loss of integrity of the oocyte results in the 
spreading of its components—including lysosomal enzymes—outside 
the follicle and invasion of neighbouring structures (Figure 2c), an 
event that can lead to degradation of neighbouring structures, in-
cluding unyolked and yolked follicles. This event, which may be 
classified as necrosis, explains the frequent finding of degenerating 
unyolked follicles near and sometimes inside atretic vitellogenic fol-
licles (see below).

Eosinophilic granulocytes (Figure  2d) have been repeatedly 
reported in ovaries containing degenerating follicles (Besseau 
& Faliex,  1989; Bruslè-Sicard & Fourcault,  1997; Chaves-Pozo 
et al., 2003; De Metrio et al., 2003; Kokokiris et al., 1999), thus rais-
ing a possible role of these white blood cells in follicular atresia. In 
Atlantic bluefin tuna, eosinophilic granulocytes have been observed 
in the interstitial tissue of ovigerous lamellae as well as at the periph-
ery of unyolked oocytes undergoing atresia (Corriero et al., 2003). 
Eosinophilic granulocytes have been observed in association with 
degenerating oocytes in swordfish intersex gonads (macroscopi-
cally male gonads with interspersed female germ cells) (De Metrio 
et al., 2003). In gilthead seabream Sparus aurata Linnaeus, 1758, aci-
dophilic granulocytes showed high phagocytic activity towards bac-
teria and their morphological and functional characteristics have led 
to the consideration of this cell type as functionally equivalent to the 
neutrophils of higher vertebrates (Sepulcre et al., 2002). However, 
the accumulation of inteleukin-1β in their cytoplasm prompted the 
hypothesis of a role related to the regulation of germ cell growth 
and/or steroidogenesis rather than to phagocytosis of degenerating 
germ cells (Chaves-Pozo et al., 2003). Although the mechanisms me-
diating the invasion of immune cells in teleost atretic follicles are 
not known, Tingaud-Sequeira et al.  (2006) reported a high level of 
two transcripts encoding for chemotactic factors in Senegalese sole 
Solea senegalensis Kaup, 1858, atretic follicles: a transcript related 
to mammalian lect2, which encodes a protein with chemotactic 
properties for human neutrophils, and a transcript encoding the 
protein S100a10, a chemoattractant for leukocytes or activator of 
macrophages. This finding provides evidence for the presence of a 
chemotaxin-mediated mechanism for leukocyte accumulation in fish 
atretic follicles, similarly to that occurring during the formation of the 
corpus luteum in the mammalian ovary (Townson & Liptak, 2003).

A peculiar mechanism of oocyte degeneration has been de-
scribed in rainbow trout Oncorhynchus mykiss (Walbaum, 1792) by 
Schulz and Blüm (1983). This process consists of the extrusion of the 
nucleus, together with a portion of ooplasm, through an opening of 
the follicle. Once expelled from the oocyte, the nucleus reaches the 
ovarian lumen where it degenerates, or it is eventually discharged 
outside through the genital pore. According to the authors’ obser-
vation, this kind of degeneration involved all the advanced previtel-
logenic oocytes of a fraction of fish that were sampled during or 
after the reproductive season. The authors hypothesized that this 

peculiar kind of massive degeneration affected oocyte batches that 
were too late in the development to be recruited into vitellogenesis 
and maturation within the current reproductive cycle and could not 
survive until the next reproductive season.

3  | MECHANISMS AND HORMONAL 
REGUL ATION OF ATRESIA

In mammals, the main molecular mechanism responsible for ovarian 
follicular atresia is apoptotic cell death (Hughes & Gorospe, 1991; 
Tilly et al., 1991). Apoptosis or programmed cell death is an evolu-
tionarily conserved physiological process involved in tissue remod-
elling, differentiation and degeneration in a variety of cell types 
(Steller,  1995). There is considerable information concerning the 
intracellular pathways involved in ovarian apoptotic cell death in 
mammals as well as the role of many regulatory genes (Hughes & 
Gorospe, 1991; Tilly, 1996a,b; Tilly et al., 1997), among which those 
encoding proteins of the Bcl-2 family that act as both “survival” and 
“death” factors (Hsu & Hsueh, 2000). However, in more recent times, 
there has been increasing evidence that apoptosis is not the exclu-
sive mechanism and that autophagy represents an alternate form 
of programmed cell death responsible for follicular atresia both in 
invertebrates and vertebrates, including mammals (Duerrschmidt 
et al., 2006; Krysko et al., 2008).

The role of apoptosis in follicular atresia in teleosts has been 
studied by Wood and Van Der Kraak (2001), who found low level of 
DNA fragmentation during the early phase of atresia in rainbow trout 
and goldfish Carassius auratus (Linnaeus, 1758) vitellogenic follicles, 
thus excluding the possibility that apoptosis is the triggering event 
of follicular atresia. In early α atretic vitellogenic follicles of Atlantic 
bluefin tuna, the occurrence of apoptotic granulosa cells is a spo-
radic finding (author's unpublished data; Figure 2e). Through the im-
munohistochemical detection of proteins involved in the two forms 
of programmed cell death in the ovaries of three characiform spe-
cies, Morais et al. (2012) showed that autophagy, a catabolic process 
involved in the turnover of long-lived proteins and organelles, and 
apoptosis are activated in a coordinated fashion. Moreover, the co-
localization pattern of proteins involved in autophagy (cathepsin-D 
and Beclin-1) and apoptosis (caspase-3, bax, bcl-2) led the authors to 
propose that these proteins interplay in the mechanism of follicular 
atresia, which would represent the result of a complex interaction 
among these factors. According to the proposed model, autophagy 
is the prevailing event during early atresia; during the late stage of 
atresia, once they have finalized their phagocytotic activity towards 
oocyte yolk and organelles, follicular cells die by apoptosis. In late 
atretic follicles of Atlantic bluefin tuna, extensive apoptosis of follic-
ular cells has been observed (authors’ unpublished data; Figure 2f). 
Therefore, the atretic process in teleost fishes involves at least three 
different processes (Santos et al., 2008): autophagy (self-digestion 
of oocyte and follicular cell components), heterophagy (phagocyto-
sis of egg components by granulosa cells that act as macrophages) 
and follicular cell death by apoptosis. Moreover, the breakdown of 
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the zona radiata and the consequent release of hydrolytic enzymes 
in the extracellular space may lead to the necrotic death of neigh-
bouring cells. The necrosis of ovarian tissue in proximity of atretic 
follicles (Figure 2c) does not make part of the atretic process itself; 
however, it may play an important role during the process of tissue 
renewal that follows the dramatic events related to ovulation (au-
thors’ personal observation).

Although follicular cell apoptosis is part of the mechanism of fol-
licular atresia in teleosts, the survival factor S100a10 (a protein that 
play an anti-apoptotic role by binding the Bcl-xL/Bcl-2-associated 
death promoter) is upregulated in Senegalese sole ovarian follicles 
undergoing atresia (Townson & Liptak, 2003). This apparent contra-
dictory finding might be related to the need of assuring survival of 
follicular cells during the initial phases of atresia.

During vitellogenesis, oocytes of oviparous vertebrates accu-
mulate large amounts of yolk proteins derived from the cleavage 
of vitellogenin, a phospholipoprotein synthesized in the liver (Hara 
et al., 2016; Patiño & Sullivan, 2002; Pousis et al., 2012, 2019). The 
fate of the yolk, which is massively reabsorbed during the atretic 
process, is not fully elucidated. It has been proposed that yolk-
derived proteins are hydrolysed in situ to free amino acids by lyso-
somal cathepsins (Wood & Van der Kraak,  2002). However, there 
is also clear evidence of a massive transfer of yolk proteins in the 
bloodstream in the course of follicular atresia (Babin, 1987a,b). The 
latter mechanism of yolk resorption has been confirmed by Tingaud-
Sequeira et al.  (2006) who found that the genes apoa1 and apoc1, 
which encode for proteins making part of chylomicrons, very low-
density lipoproteins (VLDL) and high-density lipoproteins (HDL) in-
volved in lipid transportation in the bloodstream, are upregulated 
in atretic ovaries of Senegalese sole. The presence of egg yolk pro-
teins in the plasma likely results in their rapid catabolism in organs 
other than the ovary, such as liver and kidney, which are the two 
main organs involved in the degradation of high-density lipoproteins 
in rats (Pittman & Steinherg, 1984). In the liver of greater amberjack 
captured from the wild and reared in captivity, undergoing a repro-
ductive dysfunction resulting in the extensive atresia of vitellogenic 
oocytes, high densities of melanomacrophage centres, which are in-
volved in the destruction of endogenous and exogenous material, 
and apoptotic cells were observed, and this finding was correlated 
to the hepatic overload related to the metabolism of large amounts 
of yolk-derived moieties (Passantino et al., 2020).

The role of the reproductive hormones in follicular atresia is not 
fully understood, and most of the knowledge on this issue comes 
from studies on the effects of various types of stressors on oo-
genesis (see §4). In mammals, it is well known that gonadotropins 
(GtH) and sex steroid hormones act as survival factors for germ cells 
and their withdrawal induce apoptosis (Young & Nelson, 2001). In 
Atlantic bluefin tuna reared in captivity, the systemic administration 
of a gonadotropin-releasing hormone agonist (GnRHa) (Mylonas 
et al., 2007) resulted in a reduction of male germ cell loss by apopto-
sis (Corriero et al., 2009). This effect was supposed to be mediated 
by 11-ketotestosterone (11-KT), whose increased secretion was in 

turn attributed to a GnRHa-induced luteinizing hormone (LH) re-
lease from the pituitary (Rosenfeld et al., 2012). In vitro experiments 
have shown that androgens act as survival factors for previtellogenic 
ovarian follicles of coho salmon Oncorhynchus kisutch (Walbaum, 
1792). Forsgren and Young (2012) showed that 11-KT but not 17β-
oestradiol (E2) stimulates the increase in size of late perinucleolar-
stage follicle. The use of an androgen receptor antagonist inhibited 
the growth-promoting effect of 11-KT and induced follicular atresia. 
Treatment with 11-KT showed only a weak growth-stimulating ef-
fect on oocytes at the following stage (cortical alveoli) of develop-
ment, whose growth was instead stimulated by E2. In addition to E2, 
salmon gonadotropin (SG-G100) and epidermal growth factor pro-
tected cultured rainbow trout follicular cells from apoptosis (Janz & 
Van der Kraak, 1997; Wood & Van der Kraak, 2002).

The liver synthesis of the egg yolk precursor vitellogenin is stim-
ulated by E2, and there is evidence both in vitro (Talbott et al., 2011) 
and in vivo (Clearwater & Pankhurst,  1997; Coward et  al.,  1998; 
Mylonas et al., 1998, 2010; Zupa, Rodríguez, et al., 2017) that abnor-
mally low E2 plasma concentrations are associated with a diminished 
capacity of oocyte to complete vitellogenesis, resume meiosis and 
undergo final maturation, and finally induce follicular atresia (see 
also § 4).

A few experimental studies suggest that a major pro-apoptotic 
role is played by GnRH synthesized in the ovary and acting on 
follicular cells through an autocrine/paracrine mechanism. In 
goldfish ovary, GnRH was found to protect ovarian follicles in mid-
vitellogenesis from atresia, an effect that was not mediated by GtH 
(and then exerted through a local action). However, in mature, pre-
ovulatory follicles, exposure to GnRH induced follicular apoptosis, 
a pro-apoptotic effect that was blocked by GtH (Habibi & Andreu-
Vieyra, 2007). Based on these data, as well as on experimental data 
on the effect of the co-exposure to GnRH and GtH on oocyte meio-
sis resumption, Habibi and Andreu-Vieyra (2007) proposed a model 
in which the fate of each ovarian follicle depends on the local ratio 
of GtH/GnRH. According to this model, ovarian follicles are destined 
to undergo atresia under the autocrine/paracrine action of GnRH; 
however, this GnRH action cannot be exerted if proper GtH concen-
trations are present, that is if ovulation is properly stimulated by a 
suitable preovulatory GtH surge.

As in mammals, the regulation of atresia in fish may also in-
volve the control of angiogenesis. To this regard, Tingaud-Sequeira 
et  al.  (2006) reported that, during follicular atresia of Senegalese 
sole, angiogenesis may be inhibited through the upregulation of the 
anti-angiogenic factor thrombospondin isoform thbs.

4  | FAC TORS INDUCING FOLLICUL AR 
ATRESIA

As reported above, follicular atresia is a normal component of fish 
oogenesis and it is observed throughout the ovarian cycle, although 
it is more frequent in regressing ovaries during the postspawning 
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period (Ganias et  al.,  2008; Miranda et  al.,  1999; Saidapur,  1978). 
Generally, follicular atresia does not preclude the reproductive suc-
cess of fish populations; however, an increase of the atretic rate 
beyond physiological rates can reduce the annual fecundity and 
even cause reproduction failure of both wild (Ganias et al., 2008; 
Hunter et al., 1992; Jørgensen et al., 2006; Kraus et al., 2008; Kurita 
et al., 2003; Neves et al., 2009; Rideout et al., 2005, Rideout and 
Tomkiewicz, 2011; Witthames & Greer Walker, 1995) and captive-
reared fish stocks (Corriero, Desantis, et al., 2007; Corriero, Medina, 
et al., 2007; Corriero et al., in press; Fakriadis, Miccoli, et al., 2020; 
Kjesbu et  al.,  1991; Ma et  al.,  1998; Mylonas et  al.,  2010; Pousis 
et al., 2018, 2019; Zupa et al., 2013; Zupa, Fauvel, et al., 2017; Zupa, 
Rodríguez, et  al.,  2017). Extensive follicular atresia and spawning 
omission are the most efficient strategy to optimize fecundity in 
case of low body energy reserves (Kennedy et  al.,  2008; Rideout 
et  al.,  2000, 2005) and, in general, the lower the food intake the 
higher the proportion of atretic vitellogenic follicles (Kennedy 
et  al.,  2008; Kjesbu et  al.,  1991; Ma et  al.,  1998; Scott,  1962). 
Incidentally, in farmed gilthead seabream, extensive atresia has 
been found to be associated to an inhibition of ovarian response 
to isotocin, a hormone that plays an important role in ovulation, 
oviduct contraction and spawning (Piccinno et al., 2014), suggest-
ing that spawning is totally inhibited in ovaries with a high rate of 
atretic follicles.

Factors that have been shown to increase follicular atresia 
above physiological rates include food availability and energy re-
serves (Corriero et al., 2011; Hunter & Macewicz, 1985; Jørgensen 
et  al.,  2006; Kennedy et  al.,  2008; Skjæraasen et  al.,  2013), en-
vironmental and social factors (Rideout et  al.,  2005; Rideout 
& Tomkiewicz,  2011) and various other kind of stress (Schreck 
et al., 2001). The stress response depends on fish species, stage of 
maturity, and type and severity of stressor (Pankhurst & Van Der 
Kraak,  1997; Schreck et  al.,  2001). Impairment of reproductive 
performances, including reduction of egg production via atresia, 
is a common phenomenon associated with stress in fish (Barton & 
Iwama, 1991; Donaldson, 1990). Decrease in fecundity or spawning 
omission is caused by the energy reallocation occurring when fish 
experience a stressing event, which, therefore, does not affect only 
the anabolic processes of the individual fish but also its investment 
of energy in progeny (Wendelaar Bonga, 1997).

Corticosteroids, chiefly cortisol and catecholamines are the 
main mediators of fish response to acute stress (Schreck,  2010). 
Corticosteroids have a suppressive activity on hypothalamus, pi-
tuitary and gonad functions (reviewed by Schreck,  2010), and the 
effect of stress on the reproductive axis depends on the phase of 
the life cycle during which it has been experienced as well as on the 
nature of stressors, in terms of intensity and duration (i.e. acute or 
chronic stress) (Schreck, 2010). Stressors inducing follicular atresia 
through a cortisol-mediated mechanism include confinement of 
wild fish in captivity, crowding and handling, as well as alteration of 
natural environmental parameters (temperature and photoperiod) 
(Clearwater & Pankhurst,  1997; Contreras-Sánchez et  al.,  1998; 
Kjesbu et al., 1991; Schreck et al., 2001).

The deleterious cortisol-mediated effects of stress on vitellogen-
esis, which eventually result in follicular atresia, are well documented 
in salmonids. Brown trout Salmo trutta Linnaeus, 1758, undergoing 
crowding-induced stress, showed elevated plasma levels of adreno-
corticotropic hormone and cortisol and decreased levels of circulat-
ing testosterone (T) and 11-KT (Pickering et al., 1987). Experiments 
carried out in the rainbow trout demonstrated that cortisol injection 
during advanced vitellogenesis induces a significant short-term re-
duction of plasma T and E2, but not of maturational GtH (i.e. LH) 
(Pankhurst & Van Der Kraak, 2000). This effect was not observed 
when cortisol was administered during early vitellogenesis or oo-
cyte maturation, thus indicating that the action exerted by cortisol 
is stage-specific and it likely involves GtH signal transduction but 
not LH pituitary secretion. Female brook trout Salvelinus fontinalis 
(Mitchill, 1814) exposed to acid stress showed lower vitellogenin lev-
els (Roy et al., 1990), and cortisol implantation suppressed sex ste-
roid synthesis and vitellogenesis in rainbow trout and brown trout 
(Carragher et al., 1989). It was proposed that the deleterious effects 
of cortisol on vitellogenesis are due to a transcriptional interference 
on the expression of liver E2 receptors, rather than on E2 secretion 
(Lethimonier et al., 2000).

Castranova et al. (2005) demonstrated that striped bass Morone 
saxatilis (Walbaum, 1792) that had genetically determined low cor-
tisol responses to stressors, had lower androgen levels and lower 
spermiation response to gonadotropin treatment when subjected 
to stressors, which indicates that the response of the reproductive 
axis to stress is not only mediated by corticosteroids. The effects of 
environmental pollutants on fish reproduction are often mediated 
by toxic interactions with the endocrine control mechanisms of re-
production (Flouriot et al., 1995; Goksøyr & Förlin, 1992; McKinney 
& Waller, 1994). The mechanism with by starvation, one of the most 
powerful triggers of follicular atresia, interfere with the activity of 
the reproductive axis is not fully elucidated; however, it seems to 
involve growth hormone (Sumpter et al., 1991), insulin-like growth 
factor 1, ovarian follicle stimulating hormone (FSH) receptors and 
pro-apoptotic factors (Yamamoto et al., 2011), but not cortisol.

4.1 | Starvation and crowding

Energy reserve availability, that is optimum food intake, is a prereq-
uisite for the production of high-quality gametes. In both wild and 
rearing environments (Mylonas et  al.,  2010; Rideout et  al.,  2000, 
2005), an insufficient food intake is a well-known trigger of follicu-
lar atresia. When food supply is insufficient, fishes adopt species-
specific strategies to increase survival chance, including reduction of 
fecundity through follicular atresia and spawning omission (Rideout 
et al., 2005; Rideout & Tomkiewicz, 2011; Schreck, 2010; Schreck 
et al., 2001).

In northern anchovy starved experimentally to elicit follicular 
atresia, vitellogenic oocytes were reabsorbed at a remarkable rate 
(46% of females showing α atretic yolked oocytes on the 3rd day 
after the onset of starvation) and the reintroduction of a normal 
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feeding regime was followed by a rapid retrieval of normal oogen-
esis (Hunter & Macewicz, 1985). Wild Atlantic cod Gadus morhua 
Linnaeus, 1758, with low body and liver conditions showed exten-
sive atresia of vitellogenic oocytes, suggesting that they might have 
experienced starvation (Rideout et al., 2000). Atlantic bluefin tuna 
caught by a tuna trap and therein starved up to 15 days showed a 
degree of atresia of vitellogenic follicles (36 to 100%) likely cor-
related to the number of days of starvation (Corriero et al., 2011). 
On the contrary, when gilthead seabream were fasted for many 
weeks during the spawning period, there was no negative effect 
on spawning performance (fecundity and fertilization success), egg 
proximate composition or embryo and early larval development 
(Mylonas CC, unpublished data). Apparently, this species, which 
has a very long reproductive period (3–5  months) and produces 
annually more the 2.5 times its body weight in eggs, is able to deal 
with long periods of starvation and maternal nutrient reserves 
were mobilized to maintain optimal egg nutrient composition 
(Mylonas et al., 2011).

Fasting as a stress inducer has been shown to exacerbate the 
negative effects of crowding in zebrafish Danio rerio (Hamilton, 
1822). In this species, acute (3  hr) and chronic (5  days) crowding 
resulted in a fourfold increase in whole-body cortisol level, and 
this increase was further triggered by starvation, suggesting an 
interaction between the two stressing factors in stimulating fish 
corticosteroid response (Ramsay et al., 2006). Fish are very sensi-
tive to crowding, and a sudden increase of fish density has been 
often used in experiments aimed at increasing our understanding 
of fish response to stress (Barton,  2002; Castranova et  al.,  2005; 
Wendelaar Bonga, 1997); however, the knowledge of crowding on 
follicular atresia is very limited. Substrate-spawning redbelly tilapia 
Tilapia zillii (Gervais, 1848) undergoing crowding showed a dramatic 
reduction of E2 and T plasma levels and oogenesis arrest followed 
by follicular atresia. When normal rearing conditions were restored, 
both steroids rapidly rose to original levels and oogenesis restarted 
(Coward et al., 1998). It was suggested that the reduced levels of E2 
and T during crowding were insufficient to allow completion of vitel-
logenic growth and were responsible for oogenesis arrest and atre-
sia. The mechanism leading to E2 and T suppression has not been 
elucidated; however, crowding factors, that is pheromones released 
in the water from fish reared at uncomfortable high density, have 
been proposed as possible mediators of the observed inhibition of 
reproductive axis activity (Coward et al., 1998; Pfuderer et al., 1974). 
Crowding factors have been supposed to exert an inhibitory effect 
on growth and reproduction and to depress heart rate (Pfuderer 
et al., 1974). Sex steroids made hydrophilic through glucuronide and 
sulphate conjugation and excreted to the water through fish urine, 
free steroids released through the gills (Zohar, 2021 and references 
therein cited) as well as prostaglandin F2α (Mylonas et al., 2017) are 
well-known pheromones that facilitate successful reproduction and 
spawning by synchronizing reproductive activity. However, to our 
knowledge, the identity of purported pheromones acting as repro-
duction inhibitors in high-density rearing conditions have not been 
discovered yet.

4.2 | Environmental pollution

Pollution of aquatic environments involves a broad range of chemical 
compounds deriving from human activities (industrial, agricultural, 
food industries, pharmaceutical, discharges of domestic sewage 
effluents), many of which interfere with organism endocrine func-
tion by acting either as agonist or antagonist of hormones (Johnson 
et al., 1999). Chronic pollution of aquatic environments may affect 
fish reproductive success by decreasing the quality of gametes, 
thus inducing a significant risk for the survival of fish populations 
(Au, 2004).

Severe ovarian histopathological findings, including follicular 
atresia, were reported in wild pelagic and benthic species exposed 
to pesticides (Chukwuka et al., 2019), as well as in zebrafish exper-
imentally exposed to non-steroidal pharmaceuticals (Madureira 
et al., 2011) and synthetic progestin (Jiang et al., 2019), in fathead 
minnow Pimephales promelas Rafinesque, 1820, experimentally ex-
posed to heavy metals (Driessnack et al., 2017a,b) and in climbing 
perch Anabas testudineus (Bloch, 1792) experimentally exposed to a 
pesticide (Mohapatra et al., 2020).

Studies carried out on fish captured from areas polluted by in-
dustrial and municipal spills showed that the onset of follicular atre-
sia is usually associated with a decrease of E2 plasma concentration 
(Aguilar et al., 2007; Au, 2004; Janz et al., 1997; Jobling et al., 2002; 
Johnson et  al.,  1999; Mayon et  al.,  2006), suggesting that follicu-
lar atresia results from hypothalamic–pituitary–ovarian disruption, 
with inhibition of GTH release and consequent impairment of ste-
roidogenesis. An inhibitory action of xenoestrogens on GtH release 
(negative feedback) and a consequent increase in follicular atresia 
has been reported in many fish species both in the wild (Agbohessi 
et  al.,  2015) and in experimental studies (Kaptaner & Ünal,  2011; 
Kiparissis et  al.,  2003; Mandich et al., 2007; Miles-Richardson 
et al., 1999; Ye et al., 2014). Moreover, endocrine-disrupting chem-
icals can directly induce follicular atresia by triggering cell death 
signalling. In fact, apoptosis of thecal and granulosa cells has been 
observed in fish exposed to pharmaceutical, industrial and munic-
ipal wastewater in both field (Janz et al., 1997; Prado et al., 2014) 
and experimental studies (Chen et  al.,  2016; Galus, Jeyaranjaan, 
et al., 2013; Galus, Kirischian, et al., 2013; Kaptaner & Ünal, 2011; 
Mishra & Mohanty, 2008, 2012, 2014), leading to hypothesize that 
pollutants might directly damage ovaries through the reduction of 
follicular cells available for steroid production. In zebrafish, sublethal 
dietary exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in-
hibited the transition from previtellogenesis to vitellogenesis, by af-
fecting the capability of ovaries to synthetize E2 and thus reducing 
the stimulation of hepatic vitellogenin synthesis, eventually leading 
to follicular atresia (King Heiden et al., 2006).

Contrary to the above studies, white sucker Catostomus com-
mersoni (Lacepède, 1803) living in water exposed to bleached kraft 
pulp mill effluent (Janz et al., 1997) as well as Guinean tilapia Tilapia 
guineensis (Günther, 1862) and African catfish Clarias gariepinus 
(Burchell, 1822) inhabiting water polluted by pesticides (Agbohessi 
et al., 2015) displayed follicular atresia associated with an increase 
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in E2 plasma concentrations, and the hypothesis that high levels of 
E2 might be due to an upregulation of aromatase was proposed. In 
fact, transcription of genes encoding steroidogenic enzymes might 
be either up- or down-regulated by exposure of fish to xenobiotics 
(Galus, Jeyaranjaan, et  al.,  2013; King Heiden et  al.,  2006; Molina 
et al., 2013, 2018; Sridevi et al., 2015; Wirbisky et al., 2016; Ye et al., 
2014) and confinement-induced stress (Zupa, Rodríguez, et al., 2017). 
In general, as suggested by Au (2004), the effect of environmental 
pollutants on E2 secretion and follicular atresia is species-specific, 
depending on types of pollutants (e.g. metal or oestrogen-mimetic 
substances), life traits (e.g. migratory or sedentary species), and re-
productive state (e.g. before or during vitellogenesis).

The negative impact of anthropogenic activities on the aquatic 
environment is not only represented by the spillage of polluting 
substances, but also by the drastic alteration of a geographical 
area for industrial purposes. For instance, the deviation or dam-
ming of watercourses by the construction of dams alters the local 
ecological balance and causes changes in the chemical–physical 
parameters (mainly temperature and dissolved oxygen concen-
tration). These affect the reproductive biology of the inhabiting 
fish species, by reducing sex steroid concentrations, inducing 
extensive follicular atresia and decreasing fecundity (Agostinho 
et  al.,  1993; Arantes et  al.,  2010, 2011; Perini et  al.,  2013; Sato 
et al., 2005; Thomé et al., 2012). Low dissolved oxygen concen-
tration also characterizes the so-called coastal “dead zones,” that 
is hypoxic zones mainly occurring in the northern hemisphere and 
originating from the combined action of natural phenomena such 
as upwelling and anthropogenic fertilization of marine systems by 
excess nitrogen (Diaz & Rosenberg, 2008). An increased incidence 
of follicular atresia and reduced fecundity has been observed in 
Atlantic croaker Micropogonias undulatus (Linnaeus, 1766) liv-
ing in a hypoxic area in the northern Gulf of Mexico (Thomas 
et  al.,  2005), and it was experimentally demonstrated that atre-
sia was associated to follicular cell apoptosis triggered by hypoxia 
(Ondricek & Thomas, 2018).

Finally, recent studies suggest that also exposure to microplas-
tics (Yan et al., 2020) and air pollution (Sayed et al., 2018) through 
an increase in UVR penetrating marine ecosystem might impair fish 
reproductive function and cause follicular atresia.

4.3 | Temperature and photoperiod

Whatever the habitat is—marine, freshwater or brackish—water 
temperature is one of the most effective environmental factors in 
triggering oocyte maturation and spawning in fish of the temperate 
zones (Billard et al., 1981; Bromage et al., 2001; Mylonas et al., 2010; 
Rideout et  al.,  2005). Natural or artificially induced abnormal 
changes in water temperatures can cause severe stress and lead to 
alteration of fish homeostasis (Schreck, 2010; Schreck et al., 2001), 
and when environmental conditions suitable for offspring survival 
are lost, extensive follicular atresia may occur in mature ovaries of 
both migrating and sedentary fish (Schreck et al., 2001).

Experiments conducted in Chondrostei (white sturgeon Acipenser 
transmontanus Richardson, 1836, Russian sturgeon A. gueldenstaedtii 
Brandt & Ratzeburg, 1833 and stellate sturgeon A. stellatus Pallas, 
1771) showed that exposure to high and constant temperature 
(about 18℃) induced a decrease in sex steroids and ovarian de-
generation via follicular atresia (Dettlaff & Daydova, 1979; Dettlaff 
et al., 1993; Kazanskii, 1963; Linares-Casenave et al., 2002; Webb 
et al., 1999; Webb et al., 2001). In the white sturgeon, a decrease 
in sex steroids (T and E2) and vitellogenin plasma levels, followed 
by extensive follicular atresia, occurred in individuals experimentally 
exposed to warm water (18–20℃) when the maturational compe-
tence (i.e. 100% follicles at germinal vesicle breakdown stage) had 
not yet been reached, but not in fish that had already attained the 
maturational competence (Linares-Casenave et al., 2002). These re-
sults suggested the hypothesis of a temperature-sensitive phase in 
sturgeon ovarian development that might coincide with the transi-
tion from vitellogenic growth to maturational competence, which is a 
gonadotropin-dependent step (Dettlaff et al., 1993). The increase of 
water temperature, caused by discharge from nuclear power plants 
in Sweden and Lithuania, was observed to affect oogenesis and seri-
ously compromise reproductive potential also in perch Perca fluviati-
lis Linnaeus, 1758, roach Rutilus rutilus (Linnaeus, 1758) and pike Esox 
lucius Linnaeus, 1758 (Lukšienė et al., 2000).

A sudden decrease in water temperature may also induce fol-
licular atresia. Modifications in local current pattern of Barents Sea 
was considered the main cause of vitellogenic oocyte resorption 
in Greenland halibut Reinhardtius hippoglossoides (Walbaum, 1792) 
(Fedorov,  1971). The upheaval of local environmental conditions, 
including water temperature decrease, caused by the construction 
of the Três Marias Dam (Brazil), induced an extensive resorption of 
vitellogenic follicles in curimatã-pacu inhabiting the São Francisco 
River close to the dam (Arantes et al., 2010; Sato et al., 2005). An 
episode of northern Atlantic cod mass atresia and skipped spawning, 
recorded in 1999 in Smith Sound, Newfoundland, was attributed to 
the co-occurrence of unusual low temperature (0–0.5 vs 3–4℃) and 
reduced food availability (Rideout et al., 2000).

The role of photoperiod in regulating the timing of reproduction 
in teleost fish is well known (Zohar et al., 2010) and, according to 
their photoperiod preferences, fish may be classified into long-day 
type and short-day types (Yoshioka, 1962, 1963). However, in the 
natural environment photoperiod varies in parallel with temperature, 
so that the effects of abrupt changes of each of the two variables on 
fish reproductive capacity are difficult to be discerned (Billard et al., 
1981; Clark et al., 2005; Koger et al., 1999).

In aquaculture practices, daylight modulation (i.e. short- or 
long-day lengths) is commonly applied in order to advance or delay 
gonad maturation and ovulation (Bromage et  al.,  2001; Mylonas 
et  al.,  2010). Nevertheless, if not properly regulated with respect 
to the physiological responsiveness to light stimuli, photoperiod 
can also impair the normal gametogenesis process of a fish spe-
cies. Reduction in photoperiod (i.e. short-day length exposure) in-
duced oocyte regression via follicular atresia in the long-day type 
species medaka Oryzias latipes (Temminck & Schlegel, 1846) (Koger 
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et  al.,  1999; Yoshioka,  1963). Follicular atresia was experimentally 
induced in the freshwater fish spotted snakehead Channa punctatus 
(Bloch, 1793) by means of treatments with melatonin, the hormone 
secreted by pineal organ under environmental photoperiodic stimuli 
that takes part to the regulation of reproductive cycles (Bromage 
et  al., 1995, 2001; Falcón et  al.,  2010), designed to simulate pro-
longed darkness (Renuka & Joshi, 2010). Continuous artificial light-
ing accelerates oocyte reabsorption in Atlantic salmon Salmo salar 
Linnaeus, 1758, and it is a useful tool to recondition fish and enhance 
flesh quality and increase fish commercial value (Porter et al., 2003).

5  | A SPEC TS OF ATRESIA IN C APTIVIT Y 
AND HORMONAL INDUC TION OF 
SPAWNING

When reared in captivity, almost all fishes exhibit some repro-
ductive dysfunction, ranging from complete lack of gametogen-
esis to lack of oocyte maturation, ovulation and spawning (Mylonas 
et al., 2010). Complete lack of gametogenesis is rare, and among the 
fishes produced currently under aquaculture conditions, it is limited 
to freshwater eels (genus Anguilla) (da Silva et  al.,  2018). In most 
captive-reared fishes, oocytes enter vitellogenesis, but depending 
on the rearing or welfare conditions, females (a) may undergo ex-
tensive atresia towards the end of vitellogenesis or (b) may fail to 
undergo oocyte maturation. In both cases, fish fail to ovulate and 
spawn.

In the first case, where females undergo extensive atresia to-
wards the end of vitellogenesis, no corrective measures can be taken 
when the situation is identified. Efforts must be made to improve 
rearing conditions for the next reproductive cycle, such as improving 
photothermal conditions, reducing stocking density and increasing 
tank size, improving water quality or improving broodstock nu-
trition. For example, greater amberjack maintained in land-based 
tanks supplied with bore-hole sea water, as opposed to surface sea 
water, often undergo extensive atresia towards the end of vitello-
genesis, therefore they do not reliably reach the stage of being eli-
gible for hormonal induction of maturation, ovulation and spawning 
(Fakriadis, Sigelaki, et al., 2020). An ovarian biopsy of such females 

exhibits a large percentage of vitellogenic oocytes undergoing follic-
ular atresia, which is visible not only after histological processing, but 
also in a wet mount under 100 or 40x magnification. In wet mounts, 
vitellogenic oocytes undergoing advanced follicular atresia can be 
distinguished from healthy fully vitellogenic oocytes based on (a) the 
absence of the zona radiata and (b) a lightening of the cytoplasm 
(Figure  3a,b). Females undergoing such extensive follicular atresia 
will not reproduce and will not respond to any hormonal spawning 
induction therapy, and should be discarded from this year's spawn-
ing population.

In the second case of reproductive failure in captivity, females 
complete vitellogenesis but fail to undergo oocyte maturation, 
and thus ovulation and spawning. To induce maturation, females 
are commonly treated with exogenous hormones, such as gonad-
otropin preparations (carp pituitary extracts, CPE; human chori-
onic gonadotropin, hCG or recombinant luteinizing hormone, rLH) 
or synthetic GnRH agonists (GnRHa) with or without dopamine 
antagonists (Mañanos et  al.,  2009; Mylonas et  al.,  2010; Zohar & 
Mylonas, 2001). The fish are then allowed to spawn volitionally in 
tanks, or in species that also fail to spawn in captivity—such as sal-
monids, carps and some flatfishes—their eggs are obtained manually 
by stripping and they are fertilized artificially. In this situation, eligi-
ble females are selected based on the mean oocyte diameter of their 
largest vitellogenic oocytes and the absence of extensive follicular 
atresia. To respond to the hormonal treatment, females must have 
completed vitellogenesis, and, therefore, reached the maximum size 
of vitellogenic oocytes. In species with synchronous ovarian devel-
opment, the mean diameter of a random sample of vitellogenic oo-
cytes is considered, whereas in fishes with asynchronous or group 
synchronous ovarian development the mean diameter of the larg-
est oocytes is considered (Mañanos et  al.,  2009). For example, in 
the synchronous spawner striped bass, the mean diameter of the 
postvitellogenic oocytes is 800  μm (Mylonas et  al.,  1997) and it 
tends to increase as the fish grow in size. In the group-synchronous 
European sea bass Dicentrarchus labrax (Linnaeus, 1758) and wreck-
fish Polyprion americanus (Bloch & Schneider, 1801), the diameter 
of the fully vitellogenic oocytes is 700  μm (Mylonas et  al.,  2003) 
and 1200 μm (Papadaki et al., 2018), respectively (Figure 4a and b). 
Finally, in the asynchronous meagre Argyrosomus regius (Asso, 1801) 

F I G U R E  3   Wet mounts from ovarian biopsies of greater amberjack Seriola dumerili sampled at the onset of the spawning season. (a) Fully 
vitellogenic oocytes (vg) with dark ooplasm and distinct zona radiata (zr). (b) Vitellogenic oocytes undergoing advanced follicular atresia (at) 
having a lighter ooplasm and no apparent zr. Magnification bars = 500 μm

(a) (b)
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and greater amberjack, the mean diameter of the fully vitellogenic 
oocytes is 550  μm (Duncan et  al.,  2018) and 600  μm (Fakriadis, 
Miccoli, et al., 2020), respectively (Figure 4c and d).

In addition to evaluating the oocyte diameter, the occurrence of 
follicular atresia is also considered, and a small number of atretic oo-
cyte (<2% in the viewed wet mount) is not considered a problem. In 
fact, it is often a desirable characteristic, since it is thought to con-
firm that vitellogenesis has reached its end, and from now on unless 
induced to mature, the oocytes will begin to undergo atresia when 
water temperatures increase above the optimal limits (Fakriadis, 
Miccoli, et al., 2020; Mylonas et al., 2013). Finally, the appearance 
of (a) a distinct zona radiata, appearing as a bright “halo” around the 
oocyte, and (b) a uniformly dark ooplasm in these postvitellogenic 
oocytes are also considered prerequisites of eligibility for hormonal 
induction of maturation. These latter two characteristics are ex-
tremely useful to identify the very early signs of follicular atresia 
(eFA), which may often be confused with early oocyte maturation. 
The eFA oocytes may be slightly larger than normal postvitellogenic 
oocytes, and although they also have a uniform ooplasm and a vis-
ible zona radiata, they are lighter in colour, slightly translucent and 
appear to have a thicker zona radiata (Figure 5a). These oocytes may 
be confused by the untrained observer with oocytes undergoing 
early maturation (eOM), a process associated with marked increases 
in diameter due to hydration, together with lipid droplet coales-
cence and localized clearing of the cytoplasm (Mylonas et al., 1997). 
A more careful examination of eFA oocytes identifies a number of 
differences from eOM oocytes (Figure 5b). For example, the zona 
radiata in eOM oocytes does not become much thicker than postvi-
tellogenic oocytes, and it is very distinct; in eFA oocytes, the zona 
radiata becomes thicker (2×) and appears more diffuse. Also, in eOM 
oocytes the ooplasm also becomes lighter in colour, but this “clear-
ing” is localized and not uniform. This is caused by the coalescence 
of the lipid droplets into eventually a single or few “oil droplet(s)” 

located in the centre of the egg, a process that is very common in the 
buoyant pelagic eggs of most marine fishes (Mylonas et al., 1997).

Under histological evaluation, it becomes evident that these 
eFA oocytes do not undergo lipid coalescence, their cytoplasm 
is disorganized and the enlarged zona radiata begins to fragment 
(Figure  5c and e). Another significant event is that the germinal 
vesicle (or nucleus) is no longer visible in the centre of the oocyte, 
where it was throughout the process of vitellogenesis. Nuclear dis-
solution and DNA breakdown, and zona radiata fragmentation are 
the very first morphological signs of apoptosis and follicular atresia 
(Miranda et al., 1999). On the other hand, histological examination 
of oocytes that are undergoing eOM confirms that the zona radi-
ata does not become thicker and is not fragmented, the germinal 
vesicle is still intact and may begin its migration to the periphery, 
while the lipid droplets are clearly coalescing to form larger droplets 
(Figure 5d and f).

Based on experience from a number of different marine fishes, 
females that have a large occurrence of such eFA oocytes are not 
good candidates for hormonal spawning induction (Mylonas CC, 
personal observations). Such females may undergo oocyte matura-
tion, ovulation and spawning, but very often with low fecundity and 
poor egg quality. Presumably, this is because the eFA oocytes do 
not undergo maturation -so a smaller number of eggs is produced. 
Furthermore, even the ones that appear normal postvitellogenic oo-
cytes and do undergo oocyte maturation, apparently they are some-
how compromised and produce eggs of poor quality. Poor quality 
means that fertilization success may be low, and the embryonic de-
velopment and survival are also reduced. So, being able to detect 
the very early onset of follicular atresia in aquaculture fishes is very 
important when implementing hormonal spawning induction ther-
apies, in fishes that present reproductive dysfunctions in captivity 
or when implementing breeding selection programmes with in vitro 
fertilization.

F I G U R E  4   Wet mounts from ovarian 
biopsies from (a) European sea bass 
Dicentrarchus labrax, (b) wreckfish 
Polyprion americanus, (c) meagre 
Argyrosomus regius (d) greater 
amberjack Seriola dumerili at the onset 
of the spawning season, showing fully 
vitellogenic oocytes (vg) with a distinct 
zona radiata (zr) and some sparse oocytes 
in follicular atresia (at), as well as oocytes 
in early vitellogenesis (evg). Magnification 
bars = 500 μm

(a) (b)

(c) (d)
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6  | ECOLOGIC AL A SPEC TS AND IMPAC T 
OF ATRESIA ON FISH REPRODUC TIVE 
POTENTIAL

Atresia plays a significant role in fish reproductive strategies, as 
it is a fine-tuning mechanism by which a species regulates fecun-
dity (Brown-Peterson et  al.,  2011; Kennedy et  al.,  2008; Rideout 
et al., 2000, 2005). According to Brown-Peterson et al. (2011), fish 
reproductive strategies can be classified based on spawning pat-
tern (total or partial spawners) and type of fecundity (determinate 
or indeterminate). Total spawners (referred to earlier as of the syn-
chronous ovarian type) are fish species that spawn a single batch 
during the annual reproductive season. Total spawners have a de-
terminate fecundity since their oocytes develop synchronously and 
are then released at once. Partial or batch spawners spawn multiple 
batches of oocytes, and can display either a determinate or an inde-
terminate fecundity. In partial spawners with determinate fecundity 
(group synchronous ovarian type), two oocyte populations can be 
distinguished at a given time, a synchronously developing popula-
tion of larger oocytes, which will be eventually released in succes-
sive batches, and a heterogeneous population of smaller oocytes 
representing the following group-synchronous oocyte populations. 
In partial spawners with indeterminate fecundity (asynchronous 
ovarian type), oocytes are continuously recruited into vitellogenesis 

without a dominant population (Brown-Peterson et al., 2011; Murua 
et al., 2003; Wallace & Selman, 1981).

In both total and partial spawners with determinate fecundity, 
the amount of atretic follicles in the regression phase is limited. In 
the total spawners Baltic cod Gadus morhua callarias Linnaeus, 1758, 
and black scabbardfish Aphanopus carbo Lowe, 1839, follicular atre-
sia usually occurs at low levels in the prespawning and spawning 
phase, as a mechanism to both regulate the number of eggs that will 
be spawned and remove damaged or abnormal oocytes (Bromley 
et al., 2000; Kraus et al., 2008; Neves et al., 2009). In partial spawn-
ers with indeterminate fecundity, atresia of vitellogenic oocytes 
occurs throughout the reproductive season and it becomes marked 
after the spawning phase, during ovarian regression, that is when 
the remaining vitellogenic oocytes are reabsorbed (Brown-Peterson 
et al., 2011; Pérez & Figuiredo, 1992;).

Food availability and optimal fish body condition are prerequi-
sites for success in reproduction; however, the way by which females 
regulate fecundity when food availability is limited is species specific 
(Rideout et al., 2005). Indeed, when food is scarce, fishes can adopt 
two different strategies to recover energy and assure survival: some 
species reabsorb vitellogenic oocytes via atresia (Hislop et al., 1978; 
Ma et al., 1998; Scott, 1962), and other species regulate fecundity 
by limiting the number of oocytes that are recruited into vitellogen-
esis (Bagenal,  1969; Burton,  1994; Horwood et  al.,  1989; Tyler & 

F I G U R E  5   Wet mounts from ovarian 
biopsies from different greater amberjack 
Seriola dumerili breeders at the onset of 
the spawning season, showing (a) oocytes 
at the very early stage of follicular atresia 
(eFA), and (b) oocytes undergoing early 
maturation (eOM). Vitellogenic oocytes 
(vg), as well as primary oocytes (po) and 
cortical alveoli oocytes (ca) may also 
exist in the biopsies. Histological sections 
from the same ovarian biopsies show 
vitellogenic and eFA oocytes (c and e), 
the latter exhibiting zona radiata (zr) 
enlargement and fragmentation, and 
ooplasm disorganization; and eOM oocytes 
(d and f) showing lipid droplet (arrows) 
coalescence into eventually a single oil 
droplet (od), while the germinal vesicle 
(nucleus, n) is still intact and the yolk 
globules still dispersed. Magnification bars 
=500 μm (a, d) and 200 μm (e, f)

(a) (b)

(c) (d)

(e) (f)
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Dunn, 1976). The strategy of energy retrieval may depend also on 
the phase of the reproductive cycle in which food access is restricted 
(Rideout et al., 2005).

Atresia is a potential source of error for fecundity estimates of a 
fish population, and an incorrect evaluation of its rate can make fish-
eries management measures ineffective (Armstrong & Whittames, 
2004; Cooper et al., 2005; Hunter et al., 1992; Neves et al., 2009). 
The main problems in the evaluation of the effect of atresia on repro-
ductive potential are both the short duration of atretic stages, which 
makes their detection in histological samples problematic (Hunter & 
Macewicz, 1985), and the difficulty in the identification of advanced 
atretic stages, so that usually only the first (alpha) stage of atresia 
is taken into consideration for quantification (Murua at al., 2003). 
In fish species with determinate fecundity, potential annual fecun-
dity (i.e. the total number of advanced vitellogenic oocytes matured 
per female and year, uncorrected for oocytes lost by atresia) is al-
ready determined before spawning takes place (Hunter et al., 1992; 
Kjesbu et al., 1991; Kraus et al., 2008; Murua et al., 2003; Óskarsson 
et al., 2002; Plaza et al., 2007; Thorsen et al., 2006). For these spe-
cies, the actual (realized) fecundity is currently estimated as the 
potential annual fecundity minus the number of oocytes degener-
ated by atresia (Armstrong & Whittames, 2004; Brown-Peterson 
et  al.,  2011; Murua et  al.,  2003). In total spawner, realized annual 
fecundity is usually assessed in prespawning individuals in late vi-
tellogenesis, whereas in partial spawners with determinate fecun-
dity it is usually assessed before the release of the first oocyte batch 
(Armstrong & Whittames, 2004; Brown-Peterson et al., 2011; Murua 
et al., 2003; Neves et al., 2009). In partial spawners with indetermi-
nate fecundity, in which the potential annual fecundity is not pre-
determined, total annual fecundity is calculated as batch fecundity 
(number of eggs spawned during each spawning event) multiplied 
by the estimated number of spawning events (Murua et al., 2003). 
Batch fecundity estimation is commonly carried out during the 
spawning capable phase and takes into account ovaries containing 
oocytes at maturation stage, hydrated oocytes or postovulatory fol-
licles (Armstrong & Whittames, 2004; Brown-Peterson et al., 2011; 
Hunter & Macewicz, 1985; Murua et al., 2003), so there is no need 
to correct for eggs lost via atresia in this case (Murua et al., 2003).

Despite the relevance of oocyte loss via atresia in determining 
fecundity, studies quantifying the difference between potential and 
realized fecundity are limited. In studies carried out on wild fish popu-
lations, estimated oocyte loss by atresia was around 8% in Dover sole 
Microstomus pacificus (Lockington, 1879) caught in the Pacific (Hunter 
et al., 1992) and between 12.4% and 30.5% in common sole Solea 
solea (Linnaeus, 1758) from the Atlantic (Horwood, 1993; Witthames 
& Greer Walker, 1995). Atretic degeneration was reported to involve 
6 to 13% of western mackerel Scomber scombrus Linnaeus, 1758 oo-
cytes (Greer Walker et al., 1994) and 35 to 55% of spring-spawning 
herring Clupea harengus Linnaeus, 1758 oocytes (Óskarsson et  al., 
2002). Extensive down-regulation of realized fecundity compared 
to potential fecundity was observed in turbot Scophthalmus maxi-
mus (Linnaeus, 1758) in the Baltic Sea (Nissling et al., 2016). On the 
contrary, atresia did not significantly affect fecundity in bluemouth 

Helicolenus dactylopterus dactylopterus (Delaroche, 1809) caught in 
the north-western Mediterranean; indeed, a low percentage (1.45%) 
of atretic oocytes was observed in the spawning-capable phase of 
this species (Muñoz et  al.,  2010). Interestingly, a reduction of po-
tential fecundity by 27% was reported for the Baltic cod during the 
spawning season 2000 (Kraus et al., 2008), whereas the incidence of 
atresia on fecundity in individuals captured during the spawning sea-
sons 2015–2016 was much lower (8%), despite the population was 
experiencing a high stress, showing low body condition, disappear-
ance of larger individuals and decrease in the mean length at sexual 
maturity, due to changes in environmental and ecological factors 
(Mion et al., 2018). These apparently contradictory results were ex-
plained by changes in fecundity regulation strategies of the stressed 
population, which “decided” to down regulate the number of oocytes 
entering vitellogenesis before the beginning of the spawning season 
instead of down regulate fecundity by reabsorbing oocyte via follicu-
lar atresia during the spawning phase (Mion et al., 2018).

Yolk reabsorption through extensive follicular atresia represents 
also one of the mechanisms by which fish populations or a group of 
individuals from a population, skip a reproductive season (Jørgensen 
et  al.,  2006; Neves et al., 2009; Rideout et  al.,  2005; Rideout & 
Tomkiewicz, 2011). Skipped spawning via oocyte reabsorbing can be 
caused by poor nutrition, but also by environmental factor such as 
low temperature and pollution (Rideout et al., 2005, and reference 
therein cited). In most cases, individuals that skip spawning via follic-
ular atresia are young adults that approach puberty, but eventually 
address the available energy towards somatic growth rather than re-
production (Jørgensen et al., 2006; Rideout & Rose, 2006; Rideout 
et al., 2005; Rideout & Tomkiewicz, 2011).

The annual fraction of the population that omit spawning is 
considered in recruitment projections for hoki Macruronus novae-
zelandiae (Hector, 1871) (Livingston et al., 1997) and orange roughy 
Hoplostethus atlanticus Collett, 1889 (Bell et al., 1992) stocks in the 
south-west Pacific Ocean. As regards Atlantic fish species, the pop-
ulation fractions that omit spawning are poorly known and seldom 
considered in fisheries models. However, it is widely reported that 
the Atlantic cod may not spawn annually once reaching maturation 
(Rideout et al., 2000 and references therein cited). Electronic tagging 
experiments and fishery data have shown that not all the adult indi-
viduals of the highly migratory species Atlantic bluefin tuna visit any 
of the known spawning grounds during the spawning season, thus 
leading to the disputed hypothesis that only a fraction of the adult 
population contributes to recruitment (Bello et  al.,  2021; Corriero 
et al., 2020; Medina, 2020), a reproductive strategy that could in-
volve follicular atresia as mechanism underlying spawning omission.

7  | CONCLUSIONS

Follicular atresia affects both previtellogenic and vitellogenic folli-
cles; however, the knowledge regarding its morphological and physi-
ological aspects concerns mostly vitellogenic follicles. Although 
follicular atresia is a natural physiological process, several factors 
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have been shown to increase follicular atresia above normal rates, in-
cluding fasting and various other kind of stress. Follicular atresia can 
be also induced by pollution of aquatic environments due to a broad 
range of chemical compounds deriving from human activities that in-
terfere with endocrine functions by acting either as agonist or antag-
onist of hormones. Anthropogenic activities may be responsible of 
changes of the aquatic environment, such as changes in temperature 
and oxygen concentration, affecting the reproductive biology of the 
inhabiting fish species and inducing extensive follicular atresia.

In captive-reared fishes, oocytes enter vitellogenesis but they 
may undergo extensive atresia towards the end of vitellogenesis or 
may fail to undergo oocyte maturation. Atresia of vitellogenic folli-
cles can be diagnosed through the analysis of an ovarian wet-mount 
biopsy. Spawning stock biomass is an important parameter in fish-
eries management and its estimation may be biased if atretic fol-
licle rates are not considered in the calculation of fish fecundity. 
Significant fractions of fish populations may omit spawning due 
to the occurrence of extensive follicular atresia, and this should 
also be considered in the estimation of a fish stock reproductive 
potential.

The present analysis of the literature made evident that the 
knowledge on the mechanisms and hormonal regulation of atresia 
is still insufficient. Considering the severe implications of atresia on 
the reproduction of cultured fish, a more in-depth knowledge of its 
hormonal control might help overcome reproduction dysfunctions 
and improve the existing technologies for reproduction control in 
aquaculture. The incidence of atretic rates must be carefully con-
sidered in wild fish populations exposed to aquatic pollution as it 
represents a sign of impairment of reproductive function and can re-
duce significantly fish stock reproductive potential. Finally, the sys-
tematic use of gonad histological analysis to calculate atretic rates 
would improve fecundity estimates and help refine fishery regula-
tion measures of endangered fish stocks.
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