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Abstract: This study evaluates the genetic diversity of different meagre broodstocks sampled in
Greece. A multiplex of twelve microsatellite markers was used to genotype 946 fish from eleven
stocks and batches used for broodstock selection, and the genetic data was used to calculate genetic
population parameters as well as to investigate the genetic differentiation between stocks. The
results from a relatedness analysis were used as the guiding lines for a fine-tuned and overall
evaluation of the genetic distance between stocks, and the choice of candidate breeders from some of
them. The approach implemented in this study uses well-established population genetics methods
to evaluate the selection of breeder candidates in aquaculture commercial conditions utilizing a
descriptive genetic data set based on microsatellite analyses, and to outline an efficient methodology
for establishing the basis of new breeding schemes.
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1. Introduction

Over 440 species of fish, invertebrates, and plants are farmed all over the world
(www.fao.org/fishery/statistics/global-aquaculture-production/en, accessed on 1 Decem-
ber 2021. Genetic diversity is at the base of a variety of shapes, sizes, behavior, and colors
that make aquatic species valuable and interesting. It also allows species to adapt to new
farming systems, habitats, and environmental conditions. Higher genetic diversity implies
more varieties and strains of organisms, which leads to greater adaptation possibilities in
the challenging times of climate change and overfishing [1–3]. Marine fish species exhibit
naturally high levels of genetic diversity, which is putatively the main driver of the rapid
rate of genetic improvement, compared to plants or livestock [4–7]. Highly fecund species
or r-strategists, like fish, exhibit higher polymorphism than species which produce low
numbers of eggs and/or offspring of bigger body size, also termed K-strategists, with the
propagule size (the size of the stage that leaves its parents and disperses, egg or juvenile)
being highly predictive of a species’ genetic diversity [8,9]. Moreover, high genetic di-
versity provides a good foundation for genetic improvement, by making the broadening
of the spectrum for selection objectives possible as well as utilizing the genetic diversity
of the respective traits in the base population. The success of genetic improvement is
attributed partly to capturing the broad range of genetic diversity at the start of a breeding
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program [10], while other factors are also in play. Genetic drift and inbreeding are the
main causes of genetic diversity loss in closed populations, and increase when the effective
population size is low [11]. Due to the rise in homozygosity, recessive deleterious alleles
may also accumulate, resulting most of the times in a fitness depression which amplifies
over time [12]. On the other hand, an increase in fitness is expected in populations that are
genetically diverse, and this can lead to a high effective population size. A population with
a high effective population size, as far as randomly selected neutral loci are concerned, is
more likely to contain genes with variants affecting traits, thus increasing the performance
of the stock and its ability to adapt to new farming systems and environments. However,
genetic purging is evident in wild populations of fish species with low population sizes
or low genetic diversity estimates, as well as for populations that have persisted in low
sizes and in an environmental niche since their formation [13]. Moreover, purging in wild
populations of low size may have assuaged the effects deleterious alleles have on fitness,
thus preventing a decline in fitness [14], considering that the population sizes are not
extremely low, i.e., below critical thresholds [15], making these populations highly special-
ized and at the same time vulnerable to new selective pressures. Studies of broodstock
genetic diversity utilizing DNA markers are a common tool for conservation planning
or breeding programs, with the Chinese sucker Myxocyprinus asiaticus [16], the European
huchen Hucho hucho [17], tilapias [18], the barramundi Lates calcarifer [19], the European sea
bass Dicentrarchus labrax, and the gilthead sea bream Sparus aurata [20,21] being some of
the most recent ones. Polymorphic DNA markers have expanded the frontiers of research
providing new insights into the genetic structure of fish populations [22–24], the intensity
of natural and sexual selection, and the levels of inbreeding and disassortative mating
success of alternative reproductive strategies [25]. The characteristics that microsatellites
demonstrate make them very useful as genetic markers for studies of stock identification
and population differentiation [26,27], such as the present one.

The meagre Argyrosomus regius (Asso, 1801) is a member of the Sciaenidae family,
reaching a weight of 50 kg on average and over 180 cm in total length (FishBase.org).
It is a semi-pelagic species found in the coastal areas of Senegal to the Bay of Biscay,
in the eastern Atlantic Ocean, across the Mediterranean Sea, the Gulf of Suez, and the
Black Sea. The species demonstrates a good potential for large scale aquaculture due
to its high feed conversion ratio (FCR) and fast growth rate [28], and has emerged as a
promising species for Mediterranean aquaculture [29]. The aquaculture production of
meagre in the Mediterranean area exceeded 41 thousand tonnes in 2019, showing a growth
of 10.5% compared to the previous year, while an additional growth of 2.8% is expected
actually (APROMAR, 2020 http://apromar.es/, accessed on 1 December 2021), with Egypt
producing the greatest part (approx. 75%) of this production, followed by Spain (9%),
Turkey (6%), and Greece (4%). Despite some attractive attributes of meagre, such as the
large size, good processing yield, low fat content, excellent taste, and firm texture [30], there
are few major drawbacks identified, such as the limited genetic variation of the available
broodstocks, variable growth rates, and the wide occurrence of systemic granulomatosis
which constitute bottlenecks to the expansion of the industry [31].

The objectives of the current study were to assess the genetic diversity in different
meagre breeders and offspring stocks based on microsatellite markers and then use this
information to illustrate their putative relatedness, inbreeding, and population structure.
The results outline the importance of implementing cost-effective population genetics
analytical tools, for the genetic evaluation of breeding stocks as the starting point for the
future design and fine-tuning of breeding programs.

2. Materials and Methods
2.1. Sampling

In September 2017, 302 meagre samples were collected from 8 breeder stocks (A–H)
aged more than 6 years old that were purchased from commercial companies, except
stock G, which was composed of wild fish. The last three stocks (I–K) were sampled
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in June 2020 and consisted of 643 offspring (younger than 4 years old) of the stocks A–
H (www.diversifyfish.eu/uploads/1/4/2/0/14206280/diversify_featured_article_aes_42
_sept_2017.pdf, accessed on 10 April 2018) [32] (Table S1).

2.2. DNA Techniques/PCR and Microsatellite Genotyping

DNA was extracted from all 946 samples using standard protocols [33] and DNA qual-
ity and quantity was evaluated using a NanoDrop ND 1000 spectrophotometer (Thermo
Fisher Scientific; www.thermofisher.com, accessed on 10 April 2018). One multiplex PCR
designed with 12 microsatellite loci [34] was developed for sciaenid species phylogeneti-
cally close to meagre and was optimized [35] using the Qiagen multiplex PCR kit. PCR
reactions were performed in a 10 µL reaction mix with a concentration of 10 pmol/L for
each primer and 5 ng/µL template DNA. The thermal profile included a pre-denaturation
step at 95 ◦C for 15 min followed by 30 cycles of denaturation–annealing–extension at 94 ◦C
for 30 s, 57 ◦C for 1.3 min, and 72 ◦C for 1 min and one final elongation step of 60 ◦C for
30 min. Amplicons were resolved by capillary electrophoresis on an ABI 3730 sequencer
(Applied Biosystems, Foster City, CA, USA) using a LIZ500 size standard marker. The frag-
ment size analysis software STRand (http://www.vgl.ucdavis.edu/informatics/STRand,
accessed on 10 April 2018) was used for allele scoring.

2.3. Population Genetics Analysis
2.3.1. Genetic Variability and Departure from Hardy–Weinberg Equilibrium

The mean number of alleles per locus (Na), the observed (Hobs) and unbiased expected
(He) heterozygosity [36], and Shannon’s diversity index [37] were computed for each stock
and locus using GENETIX 4.05.2 [38] and GenAlEx v. 6.5 [39]. The departure of genotypic
frequencies from the expectations of Hardy–Weinberg equilibrium (HWE) was estimated by
the inbreeding coefficient or Wright’s fixation index (FIS) using Weir and Cockerham’s [40]
f-estimator. The significance of the FIS values (i.e., consistency with the null hypothesis on
HWE) was estimated after 10,000 random allelic permutations using a simple Bonferroni
procedure to correct for multiple testing and avoid type-1 errors [41]. The presence of null
alleles or other genotyping errors were estimated for all loci and collection sites using the
Micro-Checker program version 2.2.3 [42].

2.3.2. Population Structure

Structure 2.3.2 [43] was used to infer the most likely population structure based on
microsatellite data for the 11 meagre stocks. The population structure was estimated
with a non-admixture model, without a priori population information, using a burn-in
period of 250,000 and 1,000,000 subsequent MCMC repeats for each K value between 1
and 11 for 6 iterations. Then, Evanno’s ∆K method [44] was used as an aid to define the
most informative partition by calculating the variation of the rate of likelihood between
K and K + 1. These values correspond to local maxima of the curve ∆K function of K.
The best K value was automatically calculated by the online program Structure Harvester
(http://taylor0.biology.ucla.edu/structureHarvester/, accessed on 10 August 2019).

Furthermore, the stocks were re-assessed for population structuring using a discrimi-
nant analysis of principal components (DAPC) with the “adegenet” package [45] in R. This
analysis was performed ab initio using just the raw data. DAPC analysis is divided into a
PCA (principal component analysis) which is performed first and a second DA analysis
(discriminant component analysis). PCA transforms the data and DA identifies the number
of genetic groups that best fit the data structure by using a linear transformation searching
for the maximum allelic variance between groups and the minimum allelic variance inside
groups. The assigned IDs from DAPC and Structure were juxtaposed and combined in
order to identify the common and different IDs as well as the composition of these differ-
ences. Additional PCA analyses were carried out using the adegenet package to examine
the genetic grouping of the founding stocks using only the principal components and the
putative overestimation of the DAPC grouping results.

www.diversifyfish.eu/uploads/1/4/2/0/14206280/diversify_featured_article_aes_42_sept_2017.pdf
www.diversifyfish.eu/uploads/1/4/2/0/14206280/diversify_featured_article_aes_42_sept_2017.pdf
www.thermofisher.com
http://www.vgl.ucdavis.edu/informatics/STRand
http://taylor0.biology.ucla.edu/structureHarvester/
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2.4. Relatedness Analysis

Coancestry (V1.0.1.9) software implements seven methods for the estimation of the
relatedness between individuals and four methods for the estimation of individual inbreed-
ing coefficients using individual genotypes [46]. Initially, a preliminary run was performed
using all 7 methods, and the summary statistics were used as the information upon which
the methods with less variance and the highest correlation were tested with a simulation
to evaluate their fitness to the data. The simulation was performed using the R package
“related” [47], and was based on all given genotypes, from which 400 pairs of relationships
were simulated for the 4 chosen relationship types (1600 in total): parent–offspring (PO),
unrelated (UR), full-sibs (FS), and half-sibs (HS), respectively. The two maximum likeli-
hood methods were chosen based on the summary statistics of the preliminary analysis
(DyadML and TrioML), along with a non-maximum likelihood method [46]. Lastly, a linear
regression between the simulation estimates and the summary statistics estimates for each
method was performed to evaluate the fitness of the chosen simulation depth in relation to
the whole dataset.

3. Results and Discussion
Population Genetics Indices

Micro-Checker results showed no evidence for scoring alleles due to stuttering, neither
for large allele dropout nor the presence of null alleles. Linkage disequilibrium (LD) was
estimated with the r2 method [48] and resulted in low estimates of LD in each stock; stocks
D and E had the highest estimates, in the range of 22% and 29% of the theoretical (LD)
maximum, respectively, while the rest of the stocks showed estimates below 0.1, ranging
from 2% to 9% of the theoretical maximum. The slight LD observed in stock D might have
been due to the low number (10) of individuals, while for stock E it may have been due
to the slightly higher inbreeding estimates with respect to the rest of the stocks, shown
also by its lower gene diversity and overall heterozygosity values. Heterozygosity values
for each stock and for all microsatellite loci (Table 1) were generally low, with an average
Hobs = 0.56, ranging from 0.40 in stock H to 0.83 in G. The number of alleles per locus was
also generally low (average of 3.58, ranging from 2.5 to 5.0, see Table S1).

Furthermore, the pattern of expected heterozygosity was not the same across stocks.
The alleles that were shared by half or a quarter of the stocks and the unique alleles of each
stock were differentiated, and this might be partly due to sample size differences between
stocks, and thus a bias in allele sampling; e.g., in stock F there were just 6 samples, and in
stock K there were 491. Likewise, stock H showed a reduced expected heterozygosity when
using the Weir estimator for gene diversity or heterozygosity calculation (expected and
observed). The observed and expected heterozygosity of the stocks did not change with
the use of different methods, with stock G showing the largest and H the lowest (Figure 1).
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Table 1. Heterozygosity values for 11 meagre stocks analysed with 12 microsatellite loci. The first column shows the
microsatellite locus and columns 2–12 the corresponding heterozygosity values for each stock. The last two rows show
the expected (He) and observed (Hobs) heterozygosity values for each stock. (In bold: the highest and lowest observed
heterozygosity between the stocks.) The number of fish per stock is depicted in the first row.

Gene Diversity per Locus and Population

Stock A Stock B Stock C Stock D Stock E Stock F Stock G Stock H Stock I Stock J Stock K

Number of
samples 39 81 67 10 45 6 32 22 119 35 491

Cascmic14 0.5302 0.5605 0.6533 0.585 0.6632 0.6389 0.6968 0.6994 0.7449 0.5351 0.5647
Soc-11 0.7436 0.7438 0.6691 0.685 0.559 0.7361 0.6245 0.657 0.784 0.6657 0.6857
Soc-35 0.3346 0.487 0.449 0.485 0.4886 0.6111 0.6841 0.0444 0.2363 0.602 0.533
Soc-405 0.473 0.5118 0.3247 0.34 0.022 0.4861 0.5488 0.3512 0.5913 0.571 0.4699
Soc-42 0.7988 0.8156 0.6883 0.78 0.4516 0.75 0.7983 0.5155 0.8144 0.6208 0.5858
Soc-431 0.6496 0.5871 0.1273 0.185 0.2526 0.7083 0.6587 0.5196 0.5203 0.2886 0.5424
Soc-44 0.4356 0.5021 0.4003 0.48 0.3968 0.5417 0.7046 0.2779 0.4614 0.4624 0.2359

Uba-005 0.5 0.4972 0.4639 0.18 0.4723 0.4861 0.6606 0.2975 0.4105 0.4412 0.5055
Uba-006 0.6052 0.4439 0.6479 0.585 0.3316 0.6944 0.6865 0 0.4194 0.3367 0.4436
Uba-042 0.429 0.3282 0.5711 0.445 0.4837 0.4861 0.6484 0.3967 0.5725 0.1327 0.1537
Uba-050 0.7449 0.7655 0.1898 0.51 0.664 0.7361 0.7422 0.5 0.5062 0.5029 0.5942
Uba-054 0.2041 0.178 0.3306 0.375 0.4109 0.2778 0.4956 0.4339 0.2366 0.4984 0.376

He 0.5374 0.5351 0.4596 0.4696 0.433 0.5961 0.6624 0.3911 0.5248 0.4715 0.4742
Hobs 0.5791 0.608 0.5498 0.5167 0.4593 0.5972 0.8359 0.4053 0.5183 0.5429 0.4888
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Figure 1. Heterozygosity pattern across stocks. Na: number of different alleles, Na (Freq ≥ 5%): number of different alleles
with a frequency ≥5%, Ne: number of effective alleles = 1/(Sum pi2), I: Shannon’s information index = −1 × Sum (pi × Ln
(pi)), No. Private Alleles: number of alleles unique to a single population, No. LComm Alleles (≤25%): number of locally
common alleles (Freq. ≥ 5%) found in 25% or fewer populations, No. LComm Alleles (≤50%): number of locally common
alleles (Freq. ≥ 5%) found in 50% or fewer populations, He: expected heterozygosity = 1 − Sum pi2.

The FIS index allows for understanding the evolutionary forces acting on populations.
An excess or lack of heterozygosity in a population varies depending on the mating system,
and whether and to what extent heterozygosity provides a selection advantage [49], with
the mating system’s “genetic reflection” in the data being influenced by artificial (Wahlund
effect, null alleles, inadequate allele sampling, insufficient or weak allelic dominance) or
biological reasons (inbreeding, homogamy). Negative FIS values in a panmictic population,
with a sample size considered representative, indicate an increased degree of mating
between individuals less related to each other, while positive values indicate the opposite.
The first eight stocks (A–H) consisted of breeders, so it makes sense to observe an increase
in heterozygosity outside the statistically significant limits of the HW equilibrium, which
were estimated from −0.11037 to −0.01097. In addition, D and F breeder stocks had the
smallest numbers of fish with 6 and 10 individuals, respectively. This fact means these
stocks are not very valuable in estimating the relatedness, inbreeding, and other population
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genetic parameters. Stock K, which was the largest, comprising 491 offspring, seemed to
fall within the statistically significant limits for the majority of genetic loci, while stocks I
and J showed similar values with some loci showing a higher variability (Table 2).

Table 2. Wright’s FIS parameter estimates in stocks. The first column lists the microsatellite loci and column 2 to column 12
list the corresponding estimate for each stock.

FIS per stock

Stocks A B C D E F G H I J K

Cascmic14 −0.051 −0.073 −0.135 −0.5 0.106 0.302 −0.151 −0.213 −0.145 0 −0.228
Soc-11 −0.091 −0.256 −0.175 0.459 0.017 0.184 −0.085 0.192 −0.046 −0.318 0.123
Soc-35 −0.137 −0.135 −0.356 −0.4 −0.08 0.268 −0.403 0 0.151 −0.22 −0.006
Soc-405 −0.017 −0.2 −0.234 0.455 0 0.394 −0.7 0.246 −0.062 −0.288 −0.002
Soc-42 −0.175 −0.144 −0.055 −0.233 −0.121 −0.25 −0.08 −0.035 0.137 −0.09 0.012
Soc-431 0.026 −0.214 −0.048 −0.029 0.043 −0.087 −0.362 −0.202 0.1 −0.174 0.011
Soc-44 −0.106 0.195 −0.111 −0.636 0.282 −0.471 −0.093 −0.122 0.457 −0.222 −0.08

Uba-005 0.141 −0.161 −0.248 1 −0.024 0.706 −0.31 0.106 −0.04 0.429 0.189
Uba-006 −0.131 −0.051 −0.052 −0.145 0.34 0.13 −0.168 −0.023 −0.198 −0.089 −0.08
Uba-042 −0.003 −0.122 −0.458 −0.301 −0.508 0.062 −0.433 −0.355 −0.097 −0.062 −0.061
Uba-050 −0.158 −0.171 −0.093 −0.125 −0.228 −0.042 −0.291 0.294 0.124 −0.236 −0.308
Uba-054 0.134 −0.103 −0.257 0.757 −0.179 −0.111 0.07 −0.024 −0.142 −0.19 0.046

All −0.064 −0.13 −0.188 −0.047 −0.049 0.089 −0.247 −0.013 0.017 −0.137 −0.029

The genetic structure of the stocks showed five groups, according to Evanno’s crite-
rion [44]. In Figure 2, we show the best assignment of all fish from the 11 stocks to 5 genetic
groups or clusters. Each colored column represents the probability of each individual
participating in one of the five groups starting from the first one in stock A to the last
in stock K. Although the grouping is not obvious at a glance, up to stock J individuals
are assigned mainly to groups 2, 3, and 5 while stock K is assigned almost exclusively to
1 and 4. Additionally, group 3 appears to be present in all stocks. While Structure has
been reported to provide inaccurate estimates when a uniform alpha prior is used to infer
ancestry between populations of highly unequal sizes [50], this applies to the admixture
model analysis and can be corrected with the use of a variable alpha prior option. However,
in non-admixture analysis, the unequal sample sizes do not influence the results.
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Figure 2. Illustration of the assignment of all meagre fish from the 11 stocks to the 5 genetic groups after using the software
Structure. Each column shows the individual probability of assignment to a genetic cluster, and the ID of each individual
was added in R language environment.
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DAPC analysis showed that the genetic groups 3 and 4 had the largest genetic distance
between them, with groups 1, 2, and 5 showing the smallest distance (Figure 3).
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Figure 3. Analysis of DAPC (distinguishing components and main components) to find the optimal
genetic grouping of the 11 stocks. The relative contribution of each genetic group to the overall
picture has been included in the axes based on the results of PCA and DA.

Each of the Structure clusters were juxtaposed with the DAPC clusters to find the
corresponding ones (Figure 4); at the y axis, the clusters that had the best alignment with
each other in terms of the highest number of individuals shared between them can be
observed, and at the x axis the number of total individuals in each cluster comparison can
be seen. The corresponding clusters in Structure and DAPC had a range in difference from
5% to 19%.
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Figure 4. Comparison of the genetic groups identified by Structure and DAPC methods. The y axis shows the corre-
spondence of the groups and the x axis shows the number of fish assigned to them, while DAPC grouping is used as a
reference.

For convenience, DAPC grouping will be used as the reference. The differences
between the two methods are mainly found in two groups: 2 and 5. This is evident from
the DAPC graph (Figure 3) as groups 2 and 5 appear at close genetic distances with some
degree of overlap while 3 and 4 show higher genetic distances in comparison. In addition,
in group 5, out of the 60 different assigned samples, 48 belong to the stock K.

The discriminant part of the DAPC analysis performs the clustering by maximizing
the genetic distances between groups, based on one optimal number of clusters, while PCA
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uses just the most informative principal components for the transformation and grouping
of the data. For this reason, we performed additional PCA analyses using just the principal
components to investigate the grouping of the founding stocks and the convergence with
the overall results. The offspring were clustered in DAPC groups 1 and 5; hence, by
removing them from the grouping procedure, the remaining groups would presumably
show a higher distinction. The genetic grouping of the founding stocks, excluding the
offspring populations I to K, corresponded with the overall results obtained with Structure
and DAPC for the 11 stocks. Stocks C and G showed increased genetic distance from the
rest, and A, B, D, E, F, and H showed genetic proximity (Figure S1). In the analysis with all
the stocks used, C and G are found predominantly in the more divergent DAPC clusters 4
and 3, respectively (Figure 3) and A, B, D, E, F, and H are mostly in DAPC cluster 2. Due to
the fact that stock C showed the highest genetic distance to the rest of the stocks, it was
removed to highlight the differences in DAPC cluster 2, with the inbreeding of the stocks
being indirectly and partially reflected in the PCA (Figure S2). In Supplementary Figure S2,
the grouping of A, B, and F is shown to be distinct from that of E, H, D, and G, as in the box
plot of Figure 7. In this way, a higher resolution inside cluster 2 of DAPC was achieved.
Moreover, stock G, as shown in the Structure output (Figure 2), shows genetic similarity
to stocks A and B, having private alleles which are shared by stock A and B exclusively
(data not shown). The observed similarities between A, B, and G, coupled with the low
inbreeding estimates of stock G (Figure 7), point most probably to a putative transfer of
individuals between the founding stocks and/or to gene flow events in the life history of
the natural populations these stocks originated from.

The results of the simulation are depicted in Figure 5 in the form of a box plot
comparing the performance for each type of relationship of the 1600 simulated pairs.
Moreover, a correlation estimate was performed for DyadML, TrioML, and Wang estimator
values from the simulation results versus the observed values that were produced by a
preliminary analysis, the summary statistics of which are shown in Table S3. DyadML
showed the highest correlation with 0.7332, following by TrioML with 0.7281 and Wang
with 0.6998. The expected values were calculated based on the results obtained from the
real data. The correlation of the simulated relatedness of each estimator with the actual
relatedness results (of the same estimators) investigates a misrepresentation that can arise
from the chosen simulation depth. Since the performance of the estimators was comparable
in the simulated and real data, the chosen simulation depth was deemed representative
of the dataset. Indeed, DyadML and TrioML showed the smallest variance in all types
of relationships and were the estimators that best fit our data, while the Wang estimator
showed more variance, resulting in lower confidence estimations. Lastly, the outliers
present in the box plot in Figure 5 denote some relationship estimates of the simulated pairs
with higher or lower values, and are reflective of a range of inbreeding and outbreeding
of the simulated genotypes based on the initial data, while the number of these outliers is
negligible compared to the number of the simulated pairs.
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DyadML, tri: TrioML, W: Wang.

Although it is known that the stocks A to H were comprised of breeders, while
stocks I to K were from mixed populations of offspring which will be used to select future
broodstocks, we investigated the condition of inbreeding and the putative relatedness of
all the stocks against each other. In this way, the actual integrity of the stocks is reflected,
and the putative inbreeding of the initial natural populations of the breeder stocks is
excluded. An “all versus all” relatedness analysis paves the way for a further verification
of the population structure, and gives the additional possibility of re-adjusting the existing
breeding scheme. The main objective was to dissect the relatedness of stocks I, J, and K
with the rest, and obtain an evaluation of their range of inbreeding. Furthermore, from the
relatedness analysis results, we compared the two estimators using as a grouping factor the
relationships inside each stock (IS) as well as between stocks (OS), focusing more on the
latter estimates. For this purpose, we removed the pairs of relatedness estimates that had
0 value, and hence were unrelated. Figure 6 expands on the issue, depicting two density
plots for each estimator and a scatter plot with a correlation.

We notice that most of the estimated values concerning the pairwise relatedness
estimations of individuals were between 0.1 and 0.4, with 0.25 being heavily present. Each
value represents a putative relationship of the 447,458 pairs examined (946 * (946/2)). As
a reminder, that values of 0.125 are for first cousins, 0.25 for half-sibs, and values greater
than 0.5 for full-sibs and parent–offspring relationships. The correlation between the two
estimators is to be expected, as stated before. In Figure 6, we see that most OS values
(depicted with the yellow color between different stocks) are around 0.1, indicating a
weak relatedness between the stocks. On the contrary, we observe as expected the IS
values (inside each stock) being close to 0.5, indicating parent–offspring and/or full-sib
relationships, which serves as an additional verification of the genetic differentiation
between stocks and their viability as a basis of a new breeding scheme.
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Since coancestry provides estimates of the inbreeding of each individual based on the
relatedness estimates, we plotted the inbreeding estimates results from DyadML against
the corresponding stocks and grouped them according to the common IDs (Structure and
DAPC) using DAPC clusters from 1 to 5 as a reference. The results are depicted in the
following box plot diagram in Figure 7.
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Figure 7. Graphical representation of the correlation of inbreeding values in the 11 stocks as calculated by the DyadML
method, with the 5 genetic groups from the common Structure–DAPC results, using the DAPC topology as a reference. On
the y axis, the estimates of inbreeding are depicted, while on the x axis we show the stocks; the width of the box plot does
not represent a parameter and is relative to the number of subdivisions inside a stock.

The less inbred stocks correlate with the 3rd and 4th cluster of DAPC, which is also
evident in the DAPC depiction itself, with stock C showing some increased variance as
well as high values in its inbreeding estimates in cluster 4. It is furthermore evident
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that the 2nd cluster of DAPC is the most genetically connected with the rest, and shows
the highest inbreeding values while clearly specific stocks having in its composition:
D, E, H, and J, which belong exclusively to it (cluster 2) and individuals from other
stocks (B, C, I, and K) that are connected to it. Stock K seems to be divided, in terms of
inbreeding and relatedness between clusters 1, 2, and 5, clusters that seem to have some
genetic resemblance, which indicates that stock K founders may have originated from three
different initial populations since stock K’s inbreeding estimates are relatively low. The
outliers in offspring stocks K and I in Figure 7 are individuals that show higher inbreeding
estimates than the inbreeding distribution range of these stocks, while proportionally
they are more for stock I, showcasing a founder effect, since they are mostly connected
with stock C and belong exclusively to cluster 4, while for stock K they are putative
offspring originating from the mating of full-siblings or parent–offspring crosses. The 3rd
DAPC cluster, containing fish from breeder stocks, showed small inbreeding estimates and
higher genetic diversity overall, along with the 5th DAPC cluster which was comprised
of offspring. In stock E, the 2nd cluster showed reduced genetic diversity while having
higher inbreeding estimates, with the LD estimate being ~30% of the theoretical maximum.
Moreover, the outliers in the breeder stock G can be putatively attributed to a transfer of
fish from stocks A and B as was already pointed out, or gene flow events in the life histories
of the natural populations of A, B, and G.

While meagre aquaculture has been ongoing for 30 years, few efforts have been made
to address the requirement for rigorous tracking of genetic diversity, inbreeding, and
genetic structure in commercial stocks. Numerous other species have lost genetic diversity
as a consequence of the lack of a consistent genetic evaluation, which has already been
well-documented [20,21,51–55]. In our study, the discrepancy between the effective allele
size and the number of alleles in each stock showed that the genetic diversity is not shaped
by low frequency alleles, but rather by the unequal frequencies of common alleles, with
the low number of private alleles being indicative of that. Low frequency alleles, under
neutrality or weak selection, are more prone to being wiped out by genetic drift and/or
inbreeding, influencing epistatic interactions or removing adaptive potential. The number
of private alleles as well as the heterozygosity estimates follow the pattern of inbreeding
estimates, with stocks A, B, G, and I showing signatures of genetic differentiation from the
rest of the stocks of breeders. Furthermore, the results highlight the rise of inbreeding as a
result of ongoing introgression, which can further induce genetic drift and homozygosity
after a few generations [21]. Although the wild populations where the meagre breeders
originated from were not available for comparison purposes in this study, the choice of new
breeders genetically more distant from the Atlantic–Western Mediterranean populations
will enhance the genetic potential of the species as it introduces new genetic variation
originating from different lineages [56]. We firmly believe that the findings of this study
are important to the choice of new breeders for the sustainable development and growth
of meagre aquaculture, and in addition the detailed methodology presented here can be
part of the design for new selective breeding programs, as well as to adjust and evaluate
ongoing ones.

4. Conclusions

We have successfully used microsatellite markers to infer genetic differentiation
and population structure in commercial broodstocks as well as to study genetic drift, in-
breeding and relatedness in offspring stocks. STRUCTURE and DAPC analyses of the
microsatellite genotype data generally agree and identify five groups into the specimens
studied. Furthermore, relatedness analysis indicates a weak relatedness between the stocks
but a close one between fish into most of them which is of great importance to design and
manage ongoing and future breeding programs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/fishes6040078/s1, Figure S1: PCA analysis only for the eight breeder stocks A to H, Figure S2:
PCA analysis using the breeder stocks A, B, D, E, F, G, H to highlight the resolution in cluster 2 from

https://www.mdpi.com/article/10.3390/fishes6040078/s1
https://www.mdpi.com/article/10.3390/fishes6040078/s1
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DAPC analysis of Figure 4, Table S1: Number of alleles for the twelve loci genotyped in meagre
broodstocks, Table S2:. Statistical summary of the performance of Coancestry software methods in
the exploratory analysis of the 11 stocks for method selection. The coefficient of linear correlation
between all methods as well as their variance is given.
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