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Abstract: The colonization of artificial structures by benthic organisms in the marine realm is known
to be affected by the general trophic patterns of the biogeographical zone and the prevailing envi-
ronmental traits at the local scale. The present work aims to present quantitative data on the early
settlement progress of macrofaunal benthic assemblages developing on artificial reefs (ARs) deployed
at the Underwater Biotechnological Park of Crete (UBPC) in the oligotrophic Eastern Mediterranean.
Visual census and subsequent image analysis combined with scraped quadrats were used to describe
the establishment of the communities and their development over three consecutive campaigns, span-
ning 5 years post-deployment. Macroalgae consistently dominated in terms of coverage, while sessile
invertebrates displayed different patterns over the years. Polychaeta and Bryozoa were gradually
replaced by Cnidaria, while Porifera and Mollusca displayed an increasing trend over the years.
Motile benthos was mainly represented by Mollusca, while the abundance of Polychaeta increased
in contrast to that of Crustacea. For both sessile and motile assemblages, significant differences
were observed among the years. The results of this study indicate that ecological succession is still
ongoing, and further improvement in the monitoring methodology can assist towards a more accurate
assessment of the community composition in complex AR structures.

Keywords: artificial habitats; sessile benthos; motile benthos; invertebrates; macroalgae; colonization;
visual census; photoquadrats; scientific diving; Aegean Sea

1. Introduction

An ongoing anthropogenic modification and enhancement of European coastal marine
ecosystems has taken place since the pioneering deployments of artificial reefs (ARs) in
the 1960s [1,2], and most interventions are located in the Mediterranean Sea [3]. In Greece,
the first AR initiative was established in 1999 in the North Aegean Sea [4], and since
then, several AR installation initiatives and studies have followed [1,3,5]. ARs are usually
deployed to serve the protection, restoration, and enrichment of marine ecosystems by:
(a) acting as nurseries for certain marine taxa, (b) increasing the heterogeneity and variety of
the seabed, (c) facilitating recreational fisheries, (d) supporting aquaculture, (e) enhancing
recreational diving spots, and (f) supporting experimental marine research [1,6,7].

The Cretan Sea (NE Mediterranean), as part of the South Aegean ecoregion, has been
characterized as strongly oligotrophic with limited primary productivity [8,9], high salinity
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(often exceeding 39 PSU), and temperatures ranging from 14 to 28 ◦C throughout the
year [10,11]. Artificial habitats with several heterogenous microhabitats and structural
refugia can attract various benthic and benthopelagic organisms [12]. Hence, ARs have
become an important tool for marine life and biodiversity enrichment [13]. It is therefore
interesting to study the long-term colonization and transformation of the macrobenthic
assemblages that are established on ARs over the years, especially when monitoring is
initiated concurrently or quickly after their installation. However, while AR-associated
macrobenthic assemblages have been extensively studied in the Central and Western
Mediterranean, similar assessments are limited in the oligotrophic regime of the Eastern
Basin [1,7,14,15].

Different methods are used for sessile and motile benthic assemblages to study their
ecological succession on ARs. For sessile communities, non-destructive methods (visual cen-
sus monitoring with photoquadrats) have been proposed and are widely applied [16–19].
Motile communities, on the other hand, require sampling of the substrate surface with
exhaustive methods by scraping and collecting the surface biotic layer, usually using
diving. Therefore, Chatzigeorgiou et al. [20] proposed a hand-operated suction sampler
(MANOSS) based on a slurp gun design, which is inexpensive, easy to construct, and
allows the collection of successive samples through interchangeable collection mesh bags.
The two approaches are proposed in a complementary manner for the characterization of
benthic assemblages [21].

This study constitutes a long-term assessment of the structure and succession patterns
of benthic communities developed on recently deployed ARs. Both non-destructive and
scraping methods have been applied to evaluate the biodiversity patterns on sessile and
motile components of benthic assemblages colonizing artificial structures over a 5-year
time frame. The environment of their installation is in an experimental underwater facility
located in the Southeastern Mediterranean.

2. Materials and Methods
2.1. Study Area

The Underwater Biotechnological Park of Crete (UBPC) is an experimental underwater
research infrastructure located at 1 nm from the northern Cretan coast, close to the land
premises of the Hellenic Centre for Marine Research (HCMR) in Crete (http://ubpcrete.
hcmr.gr/, accessed on 11 April 2022). It comprises a seafloor area of 2.5 ha at a depth
increasing from 18 to 22 m along the south–north direction (Figure 1) [12,22]. The seawater
temperature at the area of the UBPC ranges from 14 to 28 ◦C over the year, while the
salinity is relatively stable at 39 PSU, except for occasional dropdowns during the rainy
season (November–April); the main current has a west to east direction due to prevailing
NNW winds [11]. The seafloor area is characterized by a rather flat relief, intermixing
coarse sand flats, and dead Posidonia oceanica matte, with a macroalgal cover mainly of
Caulerpa prolifera. Patchy seagrass meadows (P. oceanica) are common along the area, while
some natural small, flat, rocky reefs of less than a couple square meters of surface area are
scarcely distributed. In 2015, twelve units of ARs made of concrete, with base diameters
between 1.2 and 2.3 m and 1.4 to 2.5 m high, were deployed at a depth of ca. 20 m at UBPC.
The purpose of the ARs project was to test the concept of a “recreational diving oasis” in
order to attract diving tourism in overexploited and oligotrophic coastal ecosystems by
mimicking natural rocky reefs [12,22] (Figure 2).

2.2. Sampling and Image Processing

Sampling was implemented with scuba diving in 2017 (June), 2019 (October), and
2020 (October). Seawater temperatures for the months of sampling were 23 ◦C for June
2017 and 25 ◦C for October 2019 and 2020. For the study of sessile benthos, five ARs,
randomly selected in each period, were sampled with 25 × 25 cm photoquadrats (Figure S1).
Five replicate quadrats per sampling event were randomly positioned over flat, exposed
areas of each AR and photographed, resulting in a total of 75 photos (25 in each sampling
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event). For this purpose, a digital mirrorless camera (Olympus OM-D E-M5) was used,
paired with two external underwater strobes to ensure consistent illumination. The analysis
of photoquadrats is a non-destructive and cost-efficient sampling method that is widely
used for the studying and monitoring of sessile communities in both natural and artificial
substrates [16–18,21]. Additionally, qualitative samples of several taxa were collected for
taxonomic identification in the lab or photographed in situ.
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Figure 2. Concrete artificial reef installed at the Underwater Biotechnological Park of Crete (UBPC),
photographed 4 years post-deployment (Photo credit: Thanos Dailianis).

The cover percentages of taxonomic categories from photoquadrat data were calcu-
lated with an advanced image analysis using PhotoQuad [23] which is a free software
specialized for underwater ecological applications in integrating various methods and tools
for the accurate calculation of species coverage. In each photo sample, 100 random points
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were spawned within the photo frame. The points over living benthic species were assigned
to a specific taxon or morpho-functional group (e.g., Mucilaginous algae or Encrusting
Bryozoa). Every single point falling on a biogenic substrate that was impossible to be
identified through visual census was designated as an “Unidentified Biogenic Substrate”
(UBS) [17,24]. UBS describes the substrates covered by small-sized organisms (e.g., bacterial
colonies, padded algae in their early stages of development, encrusting assemblages with
no clear characteristics, etc.). To a lesser extent, UBS may refer to blurry and shady areas of
biogenic cover in the photo samples, due to substrate rugosity.

For the study of motile associated fauna, six replicate padded quadrats of 25 × 25 cm
were randomly exhaustively scraped and collected from three random ARs each year with
a MANOSS suction sampler (Figure S2) [20]. The motile macrofauna taxa were collected
after sieving with a mesh size of 0.5 mm; preserved in 97% ethanol; sorted; and identified
to the family/species level for Polychaeta, Crustacea, and Mollusca. Preserved samples
were deposited in the collection of the Biodiversity Laboratory of IMBBC-HCMR.

2.3. Statistical Analysis

Statistical analysis was performed on species abundances with the PRIMER (ver. 6)
software package [25]. To mitigate the contribution of the most abundant species, data were
transformed under the fourth root formula, and a triangular similarity matrix was created
based on the Bray–Curtis similarity index [26]. In order to investigate spatial patterns in
the community structure, a non-metric multidimensional scaling (MDS) was performed
separately for the sessile and motile communities. To identify the taxa that contributed most
to the multivariate patterns of the sessile and motile communities each year, the similarity
percentages (SIMPER) analysis was used. The significance of the multivariate results was
assessed using a one-way analysis of similarity (ANOSIM) test on the transformed data.
The null hypothesis of the ANOSIM test was that there are no differences in biodiversity
patterns among the sampling periods.

3. Results
3.1. Community Structure
3.1.1. Sessile Community

A total of 37 sessile taxa were identified in the 75 analyzed photoquadrats, belonging
to six major taxonomic groups (12 Macroalgae, 8 Porifera, 1 Hydrozoa, 3 Polychaeta,
6 Mollusca, 3 Bryozoa, and 4 Tunicata).

Macroalgae dominated in terms of the surface cover consistently over the studied
period, with 82.3% coverage in 2017, 86.8% in 2019, and 86.3% in 2020 (Table S1). In
the earliest year after deployment (2017), the turf-forming algae coverage (37.0%) was
much lower than the other sampling periods (80.6% in 2019 and 73.7% in 2020), while
Mucilaginous algae (27.8%) and Dictyota implexa (13.3%), which covered a significant
amount of the surface, were completely absent in the following years. The encrusting
macroalgae comprised mostly Peyssonnelia species, while the turf-forming algae were
characterized mainly by Rhodophyta such as Jania sp. and Laurencia sp.

Sessile invertebrates contributed with 17.0% coverage in 2017, which was considered
the initial stage of colonization. Polychaeta and Bryozoa dominated (7.7% and 6.9%,
respectively) (Figure 3 and Table S1), with Serpulidae being the most abundant polychaete
family. Thereafter, Cnidaria, represented only by Hydrozoa (1.7%), and Tunicata (0.7%),
followed. Porifera and Mollusca were completely absent from the photoquadrats of 2017.
Interestingly, in the following years (2019 and 2020), the sessile invertebrate coverage
decreased (13.2% and 13.7%, respectively). Polychaeta (2.3% and 1.7%) and Bryozoa (1.9%
and 1.9%) showed a decreasing trend in favor of Cnidaria (6.5% and 6.7%). Porifera
(1.6% and 2.1%) and Mollusca (0.3% and 0.6%) showed a slight increasing trend, while
Tunicata (0.5% and 0.8%) remained stable throughout the sampling periods. A considerable
percentage of the AR surface was classified as UBS, as it represented a biogenic substrate
that could not be safely assigned to any specific taxonomic category (19.7% in 2017, 47.6%
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in 2019, and 43.6% in 2020). This category was excluded from the statistical analysis, as it
could not be assigned to a more specific morpho-functional group. In all sampling periods,
the substrate was almost completely covered by sessile benthos (mean coverage: 95.0% in
2017, 97.6% in 2019, and 99.9% in 2020).
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Figure 3. Biotic mean coverage of the major taxonomic groups of sessile invertebrates (%) showing
changes over the years. Colors indicate different major taxonomic groups that contributed to the
coverage of photoquadrats of the artificial reefs.

Additionally, three non-indigenous species (NIS) have been reported in photoquadrats:
the brown alga Stypopodium schimperi with increasing coverage from 0.5% in 2017 to 1.3% in
2020 and two NIS of Mollusca, Pinctada radiata with 0.4% in 2019 and Dendostrea cf. folium
in 2020 with 0.1%.

The MDS analysis revealed a clear differentiation among the three sampling periods
regarding sessile communities (Figure 4a). The community of 2017 tended to be more
distinctive from subsequent years 2019 and 2020, forming a well-defined cluster. One-way
ANOSIM showed a discrimination among the three groups (R = 0.443, p < 0.01). Additional
pairwise tests revealed significant differences between 2017 and 2019 (R = 0.516, p < 0.01),
between 2017 and 2020 (R = 0.685, p < 0.01), and between 2019 and 2020 (R = 0.167, p < 0.01),
supporting the MDS results.
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A SIMPER analysis between 2017 and the other two years showed that the Bray–Curtis
dissimilarity was mainly due to Mucilaginous algae showing 52.37% dissimilarity with
2019 and 54.71% with 2020 (Table 1). Between 2019 and 2020, the dissimilarity was much
lower (39.20%), with encrusting macroalgae contributing the most. The similarity of each
sampling period and the taxa that contributed most to the fauna patterns are presented in
Table 2. The category of turf-forming algae contributed the most to the similarity of each
year, followed by Cnidaria (Hydrozoa) in 2019 and 2020 and, in 2017, by Mucilaginous



J. Mar. Sci. Eng. 2022, 10, 620 8 of 15

algae, which disappeared the following years. The similarity index increased over the years
(56.12% in 2017, 63.99% in 2019, and 64.47% in 2020).

Table 1. Pairwise similarity percentage analysis (SIMPER), showing the pairwise average dissimilar-
ity (%) among three sampling periods.

Sessile Assemblages Motile Assemblages

Sampling Periods Average Dissimilarity Sampling Periods Average Dissimilarity

2017–2019 52.37 2017–2019 61.52
2017–2020 54.71 2017–2020 74.45
2019–2020 39.2 2019–2020 67.83

Table 2. Similarity percentage analysis (SIMPER), showing the contribution of common taxa to the
average similarity (%) in each year of sampling on the artificial reefs.

Major Taxonomic Group 2017 2019 2020

Average Similarity 56.12 63.99 64.47
Sessile Assemblages Taxonomic Group/Species

Macroalgae Turf-forming algae 34.43 49.25 39.23
Encrusting macroalgae 7.31 12.92 16.46
Mucilaginous algae 19.82 - -
Acetabularia sp. 5.56 - -
Dictyota implexa 3.87 - -

Cnidaria Hydrozoa 4.97 16.92 17.36
Polychaeta Other Serpulidae 17.77 16.90 12.71

Protula spp. - - 5.66

Average Similarity 53.87 40.58 33.77
Motile assemblages Family

Polychaeta Capitellidae - 6.42 -
Chrysopetalidae 6.22 13.74 7.78
Dorvilleidae - 4.13 -
Eunicidae 3.28 - -
Nereididae 3.39 - 2.57
Paraonidae 4.06 - -
Syllidae 4.13 8.65 -

Mollusca Cerithiidae 24.92 36.59 73.86
Rissoidae 7.78 9.19 -
Trochidae - - -

Crustacea Aoridae 9.41 7.89 -
Bodotriidae 4.20 - -
Caprellidae 7.78 - -
Dexaminidae 10.50 - -
Lysianassidae 6.09 - -
Pasiphaeidae - 4.24 7.14

3.1.2. Motile Community

Overall, 1898 individual macroinvertebrates (1130 in 2017, 583 in 2019, and 185 in
2020) were counted and identified at least to the family level in 18 scraped quadrats. These
were classified as Polychaeta (14.4%), Mollusca (75.5%), and Crustacea (10.0%). The mean
contribution of each taxon is presented in Figure 5 and Table S2. The participation of
Mollusca was the highest during all the sampling periods, represented by 33 species of
19 families. Bittium latreillii was the most abundant species in all the samples, with a
contribution of 63.2–69.1%. Polychaeta were represented by 15 families and showed an
increase in their contribution over the years (10.5% in 2017, 17.6% in 2019, and 28.1% in
2020), while Crustacea, represented by 16 families, decreased from 14.2% in 2017 to 3.6 and
4.3 in 2019 and 2020, respectively.
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The MDS analysis showed a clear distinction between the communities of 2017 and
2020, while 2019 stood as a discrete cluster between the two other sampling years (Figure 4b).
Additionally, one-way ANOSIM showed a discrimination among the sampling periods
(R = 0.417, p < 0.01). Additional pairwise tests revealed significant differences between
2017 and 2019 (R = 0.389, p < 0.01), 2017 and 2020 (R = 0.717, p < 0.01), and 2019 and 2020
(R = 0.217, p < 0.01). It should be noted that the motile community of 2017 showed a more
accumulated distribution, contrary to the pattern of depiction from the sessile data.

The SIMPER analysis on the motile community showed great dissimilarity among
the sampling periods compared to the sessile SIMPER results (Table 1). The Bray–Curtis
dissimilarity index between 2017 and 2020 was 74.45%, with Dexaminidae (Crustacea) con-
tributing the most. The dissimilarly percentages between 2019 and 2020 were 67.83%, with
Syllidae (Polychaeta) contributing the most, and between 2017 and 2019 was 61.52%, with
Caprellidae (Crustacea) contributing the most. The similarity of each sampling year and the
families that contributed most to the similarity pattern are presented in Table 2 Specifically,
the family Cerithidea (Mollusca) was the main driver for the assessed dissimilarity between
the sampling years due to the high abundance of the species B. latreillii. The result of the
similarity index complied with the findings of the MDS analysis, showing a much higher
similarity within the 2017 replicates (53.87%) than the other two periods (40.58% in 2019
and 33.77% in 2020). They were, however, in contrast with the patterns observed for the
sessile community analysis.

4. Discussion

Significant shifts in the structure of benthic assemblages on the ARs were observed
during the three sampling periods over a five-year survey following the initial deployment.
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This can be attributed to the community transformation of the early successional stages
of the benthic assemblages into an oligotrophic environment such as the Southeastern
Mediterranean before reaching a climax community structure [27–29].

Two years after their deployment, the ARs were mainly covered by macroalgae (78%)
divided into the three morpho-functional categories: (a) “turf-forming algae”, (b) the
canopy-forming brown alga D. implexa, and (c) opportunistic filamentous Mucilaginous
algae. At the same time, the recorded abundance of the motile species was the largest
compared to the subsequent samplings. Similar results were reported in the past for
newly deployed concrete ARs located in an oligotrophic environment on a sandy seabed
with P. oceanica seagrass meadows [30,31]. In particular, D’Anna et al. [31] identified the
opportunistic alga as Lophocladia lallemandii, which is visually similar to the corresponding
alga in this study. The presence of seasonal algae on the ARs is probably related to
shifting temperature conditions resulting from the different sampling months (June for
2017, as opposed to October for 2019 and 2020). Additionally, the presence of this taxon
is probably responsible for the lower cover of UBS in 2017. These differences could also
be partly responsible for the pronounced succession patterns observed for the sessile
communities between 2017 and 2019. A series of seasonal sampling campaigns within
the year could provide important information on this phenomenon in the future. Turf-
forming algae are characterized by their rapidly expansion on a broad spatial scale, while
they are not significantly affected by environmental disturbances [32–34]. Therefore, this
category seems to prevail in hard sublittoral substrates, especially in artificial ones [35–37].
Four years post-deployment, the turf-forming algae increased their size and total coverage,
effectively displacing the other two species completely. Encrusting macroalgae, which
mainly comprised Peyssonnelia species, were first recorded two years after deployment
and gradually increased in size and abundance in the following years, in contrast to
D’Anna et al. [31], who reported the that colonization of Peyssonnelia sp. started four years
after deployment. A detailed taxonomic description of the algae species in the ARs of
UPBC most probably will further clarify the trends in the present study.

The coverage of sessile invertebrates (15–19%) was much lower compared to the
macroalgae. This pattern is very common in early and middle successional stages on
hard substrates [38,39]. Sessile Polychaeta and Bryozoa were the main faunistic colonizers
two years after the deployment of the ARs. Serpulids, which thrived in 2017, showed a
decreasing trend the following years, as also reported by Casoli et al. [40]. Yet, this can
probably be explained by the increase in size of the macroalgae, which may be conceal-
ing the smaller-sized Polychaeta underneath. Serpulids have similarly been reported in
high abundance in eutrophic [1,41] and oligotrophic areas [29,34,42]. Erect Bryozoans are
relatively rare in exposed sublittoral substrates of the Eastern Mediterranean compared
to the Western Basin [19], while encrusting Bryozoans are usually fast colonizers of hard
substrates in the early succession stages [34,42,43]. In the present study, the coverage of
Bryozoa during the first assessment period was in line with the above observations, while
the only erect Bryozoan record was Reteporella sp. with a low presence. Hydrozoa, which
are abundant in most benthic communities of the Mediterranean Sea [44], were found
to increase their coverage in this study over the years. This upward trend has also been
recorded in previous studies [45–47] and correlated with the gradual maturation of the
sessile assemblages [47]. Porifera and Mollusca were completely absent from the first
assessment in 2017 but gradually colonized the ARs and tended to gain ground over time
(also in Casoli et al. [40]), while the presence of Tunicata was very rare. Compared to other
studies, Porifera and Tunicata were scarcely observed [45,48], but this trend conformed
to Antoniadou et al. [34], who reported a similar trend in an oligotrophic Mediterranean
environment. The absence of slow-growing demosponges with a massive growth form,
typical for Mediterranean waters, can be attributed to the early phase of the colonization
progress. Generally, pronounced ecological changes on sublittoral ARs usually occur during
secondary succession [49], which is a gradual process in time, driving the shift towards the
climax community [50]. However, many biological communities remain in a continual state
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of secondary succession, especially when random disturbances persist [51]. The increasing
presence of NIS (S. schimperi, P. radiata, and D. cf. folium) in the studied ARs across the
sampling events are related to the dynamics of the marine invasions prevalent in Eastern
Mediterranean marine ecosystems [52]. The large coverage of UBS is linked to the standard
limitations in the identification of small-sized biota based only on visual methods [17,24]
and, especially, thin biogenic mats during the early succession stages. Future analyses using
metabarcoding could elucidate the nature of UBS on artificial substrates by either identi-
fying the preliminary states of settlement of the benthic assemblages [53] or identifying
bacterial biofilms that are essential for the subsequent invertebrate larval settlement [54]. In
general, very few data exist considering the succession of motile assemblages on sublittoral
hard substrates [42], since most relevant studies usually focus on sessile species [55,56].

Regarding motile fauna, Mollusca were the dominant phylum, and this is mainly
due to the very high abundance of B. latreillii (>60%). This high abundance of B. latreillii
has been reported on hard substrates of the Eastern Mediterranean in the past and has
been attributed to the high presence of turf-forming algae, which traps organic matter,
providing suitable living conditions for this gastropod species [57–59]. Additionally, it
displays rapid growth during warm periods and high abundance in P. oceanica seagrass
meadows at 15–25 m depths, where its recruitment takes place [60].

Polychaetes are one of the most abundant invertebrate groups in Mediterranean ecosys-
tems [61–63]. Motile Polychaeta showed an increasing trend regarding their abundance
over the studied timespan. This result contradicts the corresponding trend observed for
sessile Polychaeta. Previous studies on Mediterranean ARs have shown both decreasing [7]
and increasing trends [34,42] for motile Polychaeta abundance. The abundance of Crustacea
has been substantially reduced since 2017 from about 14% to ca. 4%. The high rates of
Crustacea in 2017 are probably linked to the strong presence of the mucilaginous algae
that create a favorable environment for this taxon by increasing the biomass and available
growth space [64].

Overall, through the sampling years, a decreasing trend was observed for motile
invertebrate abundances, while the diversity seems to be consistent or slightly decreasing.
Changes in motile abundances could be affected—at least to a certain point—by bias in the
sampling method (i.e., the padded quadrat frames require a relatively flat surface in order
to eliminate the escape of high mobility specimens during the scraping phase). In addition,
stochasticity due to prevailing environmental conditions, such as strong currents and wave
actions, may drive motile species to more protected places such as cavities or under algal
canopies, and the nearby seagrass meadow, because smooth surfaces are exposed more
to hydrodynamism. The overall effectiveness of the MANOSS suction sampler has been
previously evaluated for similar habitats in comparison with other standard hard-bottom
sampling methods [65], showing no significant differences in the sampling efficiency but
an increased performance in the number of species collected and efficiency in the retention
of small-sized taxa (i.e., meiofauna).

The presence of mucilaginous algae at the first sampling event increased the com-
plexity and the algal biomass of the scraped samples, thus resulting in high abundances
of benthic fauna, as has previously been reported for similar systems [31,42,64]. Non-
parametric community analyses showed that only two families of motile invertebrates were
shared in all three sampling periods (i.e., Cerithiidae and Chrysopetalidae). Contrastingly,
four taxa contributed most to the similarity patterns of the sessile community (i.e., turf-
forming algae, encrusting macroalgae, Hydrozoa, and Serpulidae), resulting in a more
stable structure compared to that of the motile cluster. The similarity between the replicate
samples (within the sampling year) seemed to be reduced over the sampling years (as
expressed by distances in the MDS plot of Figure 4b). On the other hand, no clear pattern
can be revealed from motile fauna, reflecting the differential responses of motile and sessile
invertebrates to the deployment of ARs.

Our results clearly confirm that artificial structures are subject to highly complex
colonization patterns. This is especially true for the oligotrophic Eastern Mediterranean
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environment, where a lack of abundance of trophic sources hinders the development of
fast-growing organisms with substantial body sizes [66,67]. Extended monitoring periods
(>5 years) can help elucidate the processes that shape typical hard substrate communities,
moving gradually from the initial stages of a settlement to more mature community forms.
Different assessment methods (visual and scraped quadrats) can be complementary to
this end, since each one reveals distinct clusters of the overall assemblage, and reliance on
just one may produce partial results. It would be interesting for future studies to assess
the changes in similar local natural habitats, especially in the face of a rapidly changing
Mediterranean environment [68], to evaluate the extent to which a community shift, as
reported in our study, reflects succession patterns on artificial surfaces or global change
patterns occurring at the ecosystem level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jmse10050620/s1: Table S1. Mean coverage percentage ± standard deviation of sessile taxa
on artificial reefs per year. Table S2. Mean abundance percentage ± standard deviation of motile
invertebrates on artificial reefs per year. Figure S1. Photographed quadrat of 25 × 25 cm placed on
the surface of an AR. Figure S2. Sampling of the motile component of benthic assemblages.
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