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Abstract 31 

Cell growth and differentiation signals of Insulin-like growth factor-1 (IGF-1), a key regulator in 32 

embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which 33 

activates several downstream pathways. The present study aims to address crucial in organogenesis and 34 

development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic 35 

machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of 36 

reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), three days post-37 

hatching larvae (D3), thirty-three (D33) and forty-six (D46) days post-hatching juveniles. During both 38 

the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate 39 

the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-40 

hatching process, and juvenile organs completion. On the contrary, apoptosis was induced during 41 

embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic 42 

rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic 43 

turnover with increased substantial energy consumption. The findings of the present study demonstrate 44 

the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. 45 

dumerili. 46 

 47 
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1. Introduction 61 

Growth, a continuous biological process that commences from embryogenesis up until postnatal 62 

adult stage, is the cumulative outcome of cell proliferation and cell differentiation (Duan et al. 2003). In 63 

vertebrates, the genetically predetermined growth pattern and growth-related processes, such as energy 64 

metabolism, are controlled by a hormonal regulatory network, while simultaneously affected by 65 

environmental and nutritional factors (Duan 1998; Fuentes et al. 2013a). For instance, due to teleosts 66 

ectothermic nature, developmental processes including hatching, sexual maturation and spawning are 67 

triggered by conditions such as temperature, photoperiod and food availability (Duan 1998). In addition, 68 

regulation of muscle growth is modified throughout fish development, depending on age and 69 

reproductive stage, and annual cycles (Vélez et al. 2017). Growth in most fish species relies throughout 70 

the life cycle on both the formation of new muscle cells and the increase in size of existing ones, known 71 

as muscle hyperplasia and hypertrophy respectively (Johnston 1999). The aforesaid deviates fish from 72 

higher vertebrates, in which postnatal growth is mediated exclusively via the hypertrophic mechanism 73 

(Rowe and Goldspink 1969; Fuentes et al. 2011). 74 

Somatic growth and development in vertebrates, including teleosts, is mainly governed by the 75 

growth hormone/insulin-like growth factor (GH/IGF) axis (Picha et al. 2006; Zhong et al. 2012). 76 

Secretion of IGF-1 is mainly GH-stimulated, although other hormones as well as nutritional, metabolic 77 

and environmental signals greatly influence its expression (Triantaphyllopoulos et al. 2020). IGF 78 

signaling system is involved in skeletal muscle growth and metabolism, and embryonic development in 79 

teleosts (Eivers et al. 2004; Codina et al. 2008; Triantaphyllopoulos et al. 2020). IGF-1 ligand signals for 80 

several functions including cellular growth and metabolism are mainly transduced through specific 81 

binding to a tyrosine kinase receptor, the type 1 IGF receptor (IGF-1R) (Pozios et al. 2001; Eivers et al. 82 

2004). The latter ligand-receptor interaction triggers the autophosphorylation-induced activation of IGF-83 

1R, which in turn phosphorylates a host of intracellular substrates, thus leading to the activation of two 84 

major intracellular signaling pathways, the mitogen-activated protein kinases (MAPKs) and the 85 

phosphatidylinositol-3 kinase/Akt-1 (PI3K/Akt-1) (Eivers et al. 2004; Fuentes et al. 2013a). Mitogenic 86 

action of IGFs is mediated through both aforementioned pathways from early embryonic stages in 87 

teleosts (Pozios et al. 2001). The MAPK pathway is immensely linked to skeletal muscle development, 88 

whereas its activation stimulates muscle cell proliferation and terminal differentiation, hypertrophy and 89 

IGF-1R-dependent mitogenesis (Haddad and Adams 2004; Li and Johnson 2006; Codina et al. 2008). 90 
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During early stages of differentiation, IGF-stimulated proliferation via MAPK pathway is decreased, 91 

whereas IGF-1 signal transduction through activation of PI3K/AKT pathway modulates muscle 92 

hypertrophy and myoblast differentiation (Coolican et al. 1997; Bodine et al. 2001). In addition to the 93 

activation during differentiation and maturation, PI3K/AKT pathway mediates IGF-1 anabolic effects, 94 

such as glucose and amino acid uptake in muscle, and stimulates protein synthesis (Negatu and Meier 95 

1995; Castillo et al. 2004; Codina et al. 2008). Moreover, MAPKs seem to be involved in development 96 

via another pathway: its activation is involved in the regulation of Hsps (Feidantsis et al. 2012), which 97 

are required for two distinct developmental steps, oogenesis and early larval development (Jedlicka et al. 98 

1997). A regulatory link between hormones such as IGF-1 and Hsp expression has been previously 99 

shown in teleosts (Sathiyaa et al. 2001). 100 

Programmed cell death is an equally important part in the growth pattern, involved in various 101 

aspects of vertebrate development (Jacobson et al. 1997). Apoptosis and autophagy constitute the two 102 

main processes of programmed cell death, acting synergistically or independently (Mariño et al. 2014). 103 

Apoptosis counterbalances developmental errors, acting as a mechanism of quality control and repair, 104 

while concomitantly contributing to the formation of new structures and degeneration of precedent ones 105 

between developmental stages, and the structural flexibility towards functional adaptations (Jacobson et 106 

al. 1997; Meier et al. 2000). In addition, equilibrium between anti-apoptotic and pro-apoptotic molecules, 107 

which alongside caspases are the main apoptosis components, is a key-regulator in cell survival during 108 

early embryonic development (Krajewska et al. 2002). Similar to apoptosis, autophagy is directly 109 

involved in cell differentiation and tissue remodeling during embryogenesis, morphogenesis and 110 

developmental events through degradation and recycling of cytoplasmic constituents (Lee et al. 2014; 111 

Agnello et al. 2015). Autophagy’s implication in development extends throughout ontogeny, constituting 112 

the energy supplier during energetically-costly processes such as larval-to-juvenile transition (Mawed et 113 

al. 2019). 114 

Disruptions in the aforementioned signaling pathways may result in reproductive dysfunctions 115 

(Zupa et al. 2017), which have been reported in several species reared under aquaculture conditions, 116 

including greater amberjack Seriola dumerili (Risso, 1810), a marine pelagic teleost species (Mylonas 117 

and Zohar 2000). In regard to Mediterranean aquaculture diversification, greater amberjack is considered 118 

as an excellent candidate due to high growth rate, high commercial demand and excellent flesh quality 119 

(Papandroulakis et al. 2005; Nakada 2008). However, reproduction control in captivity has been one of 120 
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the major obstacles in this species commercialization due to the occurrence of several dysfunctions 121 

including failure of oocyte maturation and ovulation (Micale et al. 1999; Mylonas et al. 2004) as well as 122 

spermatogenesis impairment (Zupa et al. 2017). The present study aims to address the regulation of 123 

mitogenic, metabolic and cell death signaling during the development of greater amberjack under rearing 124 

conditions. In specific, crucial in organogenesis and development pathways, including MAPKs (p38, 125 

p44/42, JNK), AKT, heat shock response (Hsp60, Hsp70, Hsp90), apoptotic (Bax, Bcl-2, Caspases) and 126 

autophagic machinery (SQSTM1/p62, LC3 II/I, Ubiquitin), as well as, energy metabolism (AMPK, 127 

AMP/ATP ratio, metabolic enzymes’ activity), were examined in relation to the activation of IGF-1R 128 

during five developmental stages of reared greater amberjack: 1 day prior to hatching fertilized eggs, 129 

hatching day, 3 days post-hatching larvae, thirty three days post-hatching young juveniles and forty six 130 

days post-hatching juveniles. 131 

 132 

2. Material and Methods 133 

2.1. Experimental procedure - Sampling 134 

Samples were provided by a Greek commercial aquaculture facility, Galaxidi Marine Farm SA 135 

and scientists involved in animal handling and sampling were accredited by the Federation of Laboratory 136 

Animal Science Associations (FELASA) in categories A–D of competence. In specific, samples of 1 day 137 

prior to hatching fertilized eggs [day -1 (D-1)], hatching day [day 0 (D0)], three days post-hatching larvae 138 

[day 3 (D3)], and thirty-three and forty-six days post-hatching juveniles [day 33 (D33) and day 46 (D46), 139 

respectively] were collected. Fish developmental stages were as described in Tachihara et al. (1993). 140 

Sampling days were selected based on pivotal ontogenic and/or physiological events during greater 141 

amberjack development. Briefly, D-1 was selected to assess singaling pathways involvement in crucial 142 

embryonic processes including myogenesis, while D0 represents the onset exposure of newly-hatched 143 

larvae to the surrounding environment. D3 marks the mouth-opening stage, a fundamental switch period 144 

from endogenous to exogenous/mixed feeding, where yolk-sac absorption is almost completed (Masuma 145 

et al. 1990). At D33, greater amberjack undergoes the larval-to-juvenile transition (metamorphosis), 146 

while simultaneously marks the weaning from live feeds (rotifers) onto dry diet (fishfeed). Lastly, D46 147 

was selected as a representative point during juveniles’ rapid growth. 148 

Two incubators, with a volume of 280 l, were each stocked with ~780g greater amberjack eggs. 149 

Borehole water was provided to the incubators, with a renewal rate of 50% per hour. The desired water 150 
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temperature (> 23°C) was achieved using heat pumps. During the egg and first larval stages, gentle 151 

ventilation was provided for the smooth stirring of the water, to ensure maximum survival of eggs and 152 

larvae. From each incubator, three biological replicates were collected (N = 6). At the same time, three 153 

tanks, with a volume of 2,800 l, were each stocked with ~ 300 g fertilized eggs. Samples were collected 154 

on both day 33 and 46 from tanks. From each tank, two biological replicates were collected (N = 6). Fish 155 

were euthanized immediately after their removal from the tanks, using high concentrations of anesthetic. 156 

Immediately, after collection all samples were placed in sterile 2 ml vials, frozen using liquid nitrogen, 157 

and stored at -80oC until further analysis. Mean values of physicochemical data of the incubators and the 158 

tanks are presented in Table 1. 159 

 160 

2.2. Preparation for immunoblotting 161 

The preparation of samples for SDS-PAGE, quantification of caspases and ubiquitinated proteins 162 

and immunoblot analysis are based on well-established protocols. Prior to homogenization, pooling of 163 

fertilized eggs and larvae was necessary to reach the required weight for immunoblotting. Specifically, 164 

50 mg of frozen eggs, larvae and juvenile samples were immediately homogenized in 3 ml g-1 of cold 165 

lysis buffer (20 mM β-glycerophosphate, 50 mM NaF, 2 mM EDTA, 20 mM Hepes, 0.2 mM Na3VO4, 166 

10 mM benzamidine, pH 7, 200 μM leupeptin, 10 μΜ trans-epoxy succinyl-Lleucylamido-(4-guanidino) 167 

butane, 5 mM dithiotheitol, 300 μΜ phenyl methyl-sulfonyl fluoride (PMSF), 50 μg ml-1 pepstatin, 1% 168 

v/v Triton X-100), and extracted on ice for 30 min. Samples were centrifuged (10,000 × g, 10 min, 4°C) 169 

and the supernatant was boiled with SDS/PAGE sample buffer (330 mM Tris-HCl, 13% v/v glycerol, 170 

133 mM DTT, 10% w/v SDS, 0.2% w/v bromophenol blue) in a 3:1 ratio (40 μl buffer for 120 μl 171 

supernatant). For the determination of LC3 II/I ratio and SQSTM1/p62 levels, samples were lysed in a 172 

buffer containing 150 mM NaCl, 20 mM Hepes, 5 mM DTT, 0.3 mM PMSF, 0.2 mM leupeptin, 0.01 173 

mM E64 and 1% Triton X-100. Lysates were incubated on ice for 30 min and then centrifuged at 4°C, 174 

for 5 min at 3,000 × g. Protein concentration was determined by using the BioRad protein assay. 175 

For the SDS-PAGE, equivalent amounts of proteins (50 μg), from samples of 5 individual batches 176 

of each developmental stage, were separated either on 10% and 0.275% or 15% and 0,33% (w/v) 177 

acrylamide and bisacrylamide, followed by electrophoretic transfer onto nitrocellulose membranes (0.45 178 

μm, Schleicher & Schuell, Keene N. H. 03431, USA). 179 



7 
 

The resulting nitrocellulose membranes were subjected to overnight incubation with: polyclonal 180 

rabbit anti-bcl2 (7973, Abcam), polyclonal rabbit anti-bax (B-9) (7480, Santa Cruz Biotechnology), 181 

monoclonal mouse anti-HSP70 (H5147, Sigma), monoclonal mouse anti-HSP90 (H1775, Sigma), anti-182 

HSP60 (12165, Cell Signaling, Beverly, MA, USA), monoclonal mouse anti-phospho-SAPK-JNK 183 

(9255, Cell Signaling, Beverly, MA, USA), monoclonal rabbit anti-phospho p44/42 MAPK (4376, Cell 184 

Signaling, Beverly, MA, USA), polyclonal rabbit anti-phospho-p38 MAP kinase (9211, Cell Signaling, 185 

Beverly, MA, USA), polyclonal rabbit anti-SAPK-JNK (9252, Cell Signaling, Beverly, MA, USA), 186 

polyclonal rabbit anti-p44/42 MAPK (4695, Cell Signaling, Beverly, MA, USA), polyclonal rabbit anti-187 

p38 MAPK (9212, Cell Signaling, Beverly, MA, USA), monoclonal rabbit anti-LC3B (3868, Cell 188 

Signaling, Beverly, MA, USA), polyclonal rabbit anti-p62/SQSTM1 (5114, Cell Signaling, Beverly, 189 

MA, USA), monoclonal rabbit anti-phospho AMPK (2535, Cell Signaling, Beverly, MA, USA), 190 

monoclonal rabbit anti-AMPK (5831, Cell Signaling, Beverly, MA, USA), anti-phospho-IGF-1R (3918, 191 

Cell Signaling, Beverly, MA, USA), anti-IGF-1R (9750, Cell Signaling, Beverly, MA, USA) and anti-192 

phospho-Akt (9271, Cell Signaling, Beverly, MA, USA), anti-Akt (9272, Cell Signaling, Beverly, MA, 193 

USA). Quality transfer and protein loading western blot, were assured by Ponceau stain and actin (anti-194 

β actin 3700, Cell Signaling, Beverly, MA, USA). 195 

Concerning cleaved caspases and ubiquitination levels, protein samples were immunoblotted with 196 

a dot blot apparatus employment (Hofmann and Somero 1996) and membranes were overnight incubated 197 

with monoclonal rabbit anti-cleaved caspase antibody (8698, Cell Signalling) and monoclonal mouse 198 

anti-ubiquitin conjugate (3936, Cell Signalling). Bands and blots were detected by enhanced 199 

chemiluminescence, while quantification was applied through laser-scanning densitometry (GelPro 200 

Analyzer Software, GraphPad). 201 

 202 

2.3. Determination of intermediate metabolism enzyme activities 203 

Activities of lactate dehydrogenase (L-LDH; E.C. 1.1.1.27.), citrate synthase (CS; E.C. 4.1.3.7.), 204 

and 3-hydroxyacyl CoA dehydrogenase (HOAD;1.1.1.35) were estimated in samples according to well-205 

established techniques (Moon and Mommsen 1987; Sidell et al. 1987; Singer and Ballantyne 1989; 206 

Driedzic and Fonseca de Almeida-Val 1996). For the analysis of L-LDH and HOAD activities, samples 207 

were homogenized in a buffer containing 150 mM imidazole, 1 mM EDTA, 5 mM dithiothreitol (DTT) 208 

and 1% Triton X-100, pH 7.4. For CS activity, tissue samples were homogenized in a buffer containing 209 
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20 mM HEPES, 1 mM EDTA, with 1% Triton X-100, pH 7.4. To avoid loss of enzyme activity during 210 

sample preparation, procedures were performed on ice. Before analysis, homogenates were centrifuged 211 

at 13,000 × g for 10 min at 4°C. Maximum activity levels were determined spectrophotometerically at 212 

18°C. Activities of L-LDH and HOAD enzymes were measured following the oxidation of NADH at 213 

340 nm (mM extinction coefficient = 6.22), while CS enzyme activity was determined based on the 214 

reaction of free coenzyme A with DTNB (5.5 V dithio-bis (2- nitrobenzoic acid) at 412 nm (mM 215 

extinction coefficient = 13.6). L-LDH was assayed in a medium containing 0.15 mM NADH, 1 mM 216 

KCN and 50 mM imidazole, pH 7.4. The reaction was initiated by adding 1 mM pyruvate. CS was 217 

assayed in a medium containing 0.4 mM acetyl CoA, 0.25 mM DTNB and 75 mM Tris buffer, pH 8.0. 218 

The reaction was initiated by adding 0.5 mM oxaloacetate (OAA). 3-hydroxyacyl CoA dehydrogenase 219 

was assayed in a medium containing 0.15 NADH, 1 mM KCN, 1 mM EDTA, 50 mM Imidazole, pH 7.4. 220 

The reaction was initiated by the addition of 2.0 mM acetoacetate. Enzyme activities are expressed as 221 

micromoles of substrate min/mg protein. Protein concentration in supernatants was determined by using 222 

the BioRad protein assay. 223 

 224 

2.4. Statistics 225 

Changes in biochemical responses were tested for significance at the 5% level by using one-way 226 

Analysis of variance (ANOVA) (GraphPad Instat 3.0). Post-hoc comparisons were performed using the 227 

Bonferroni test. Values are presented as means ± S.D. 228 

 229 

3. Results 230 

3.1. Insulin-like growth factor receptor (IGF-1R) and Akt 231 

The levels of IGF-1R and Akt phosphorylation in the five different developmental stages of the 232 

greater amberjack are depicted in Fig. 1. Generally, compared to stage D-1, a significant decrease of 233 

phosphorylation ratio of both IGF-1R and Akt levels was observed in stage D0 and D3 (p < 0.05). 234 

However, the subsequent stage of D33 displayed a significant increase, while phosphorylation ratio of 235 

both IGF-1R and Akt decreased in the following stage D46 (Fig. 1). 236 

 237 

 238 
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3.2. Mitogen‑activated protein kinases, MAPKs (p38 MAPK, p44 / 42 MAPK and JNK phosphorylation 239 

ratios) 240 

Phosphorylation ratios of p38 MAPK, p44/42 MAPK and JNK followed a similar pattern, 241 

showing statistically significant differences among the examined developmental stages (p < 0.05). 242 

Specifically, the activation of p38 MAPK increased significantly at the stage D0 compared to stage D-1. 243 

Nevertheless, a significant decline was observed at stage D3, followed by a new increase in the following 244 

developmental stages D33 and D46, where the phosphorylation ratio maintained at similar levels to the 245 

early developmental stages. Regarding the phosphorylation of p44/42 MAPK, increased levels were 246 

observed in stage D0, compared to stage D-1, while a significant reduction was apparent in stage D3. In 247 

the following developmental stages (D33 and D46), the phosphorylation ratio of p44/42 MAPK increased 248 

significantly, exhibiting its highest levels in stage D46. Concerning JNK, its lowest phosphorylation 249 

levels was recorded in stage D-1 while its highest in stage D0, followed by a significant decrease in the 250 

later developmental stages (Fig. 2). 251 

 252 

3.3. Heat shock response (Hsp60, Hsp70 and Hsp90) 253 

The expression patterns of Hsp60, Hsp70 and Hsp90 in the five different developmental stages of 254 

the greater amberjack are shown in Fig. 3. Hsp60 levels were significantly lower in the stages D-1 and 255 

D0, compared to the later developmental stages (p < 0.05). Similarly, low expression levels of Hsp70 256 

were also observed in stages D-1 and D0. However, a higher induction of Hsp70 was recorded in D3 257 

stage compared to the early and later developmental stages (p < 0.05). Concerning Hsp90, a significant 258 

increase was observed in stage D0, which was also maintained at high levels in stage D3 but decreased 259 

significantly in the later stages (p < 0.05) (Fig. 3). 260 

 261 

3.4. Apoptosis (Bax/Bcl-2 ratio and caspases) 262 

In order to investigate the apoptotic machinery in the examined developmental stages of greater 263 

amberjack, the expression levels of the anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax, as 264 

well as caspases were determined. Caspase levels exhibited higher levels in stage D33 comparing to the 265 

other developmental stages (p < 0.05). Bax/Bcl-2 ratio was found to be higher in stage D3 compared to 266 

the early and later developmental stages (p < 0.05) (Fig. 4). 267 

 268 
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3.5. Autophagy (QSTM1/p62 levels, LC3 II/I ratio and ubiquitin) 269 

The results from the determination of autophagy machinery in the examined developmental stages 270 

of the greater amberjack are presented in Fig. 5. Regarding protein ubiquitin conjugates, a sharp induction 271 

was apparent in stage D0 comparing to stage D-1 (p < 0.05). Subsequently, levels of ubiquitination 272 

decreased in stages D3 and D33 while an additional increase was observed in stage D46. During the 273 

development of the greater amberjack, the SQSTM1/p62 levels and LC3 II/I ratio followed a reverse 274 

pattern. Specifically, the decreased levels of SQSTM1/p62 and the increased LC3 II/I ratio among the 275 

successively developmental stages D-1/ D0 and D3/ D33 indicated the triggering of autophagy (Fig. 5). 276 

 277 

3.6. Metabolic pathways (AMPK phosphorylation and AMP/ATP ratio) 278 

In Fig. 6, phosphorylation of AMPK, ATP and AMP levels, as well as AMP/ATP ratio are 279 

illustrated in the five examined developmental stages of the greater amberjack. Although, AMPK 280 

phosphorylation decreased in stage D0, compared to stage D-1, a significant activation was observed in 281 

the following stages, exhibiting its highest levels in stage D33 (p < 0.05). ATP levels decreased 282 

significantly in stage D0, compared to stage D-1, and exhibited its lowest levels. Thereafter, ATP levels 283 

increased slightly and in stage D33 remained at levels similar to stage D-1. Subsequently, a significant 284 

decrease was observed in stage D46. Compared to the ATP levels, AMP levels and AMP/ATP ratio 285 

followed a similar pattern as depicted in Fig. 6. 286 

 287 

3.7. Metabolic enzymes’ activity (L- LDH, HOAD and CS) 288 

The activity of L-LDH displayed its highest peak in stage D-1 but decreased significantly in stage 289 

D0, remaining at constant levels throughout the following developmental stages (p < 0.05) (Fig. 7a). 290 

Likewise, as displayed in Fig. 7b, the pattern of HOAD activity was similar to that observed for L- LDH, 291 

except for stage D3 where HOAD activity levels returned to that of stage D-1 (Fig. 7b). In contrast to 292 

LDH and HOAD, CS activity increased significantly in stages D0 and D3, compared to stage D-1 (Fig. 293 

7c). Thereafter, a transient decrease in enzymatic activity was seen in stage D33, reaching similar levels 294 

to stage D0, but CS activity increased again in stage D46 (Fig. 7c).  295 

 296 

 297 

 298 
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3.8. Correlation analysis 299 

Table 2 illustrates the correlation analysis between the studied biological parameters of different 300 

greater amberjack developmental stages. Most of the studied parameters were significantly correlated. 301 

 302 

4. Discussion 303 

Understanding signaling patterns during species development is fundamental in enlightening the 304 

catalytic cell mechanisms and functions contributing in ontogeny. The present research demonstrates for 305 

the first time the shifts in mitogenic, metabolic and cell death signaling occurring throughout the 306 

development of a rearing teleost fish, Seriola dumerili, from fertilized eggs to juveniles. Additionally, 307 

this research elucidates the developmental stage-dependent activation of IGF-1R and the regulatory 308 

linkage among critical pathways such as IGF-1/Akt and IGF-1/MAPK, and major ontogenetic events and 309 

nutritional shifts of S. dumerili. 310 

 311 

4.1. The IGF-1/Akt pathway during S. dumerili development 312 

IGF-1, as mediator of the pituitary GH effects or acting in an autocrine/paracrine manner, 313 

stimulates muscle growth via a ligand-receptor interaction with IGF-1R (Le Roith et al. 2001; Bower et 314 

al. 2008; Fuentes et al. 2011). In particular, IGFs are implicated, through the transduction of 315 

miscellaneous signals, in hyperplasia (cell proliferation activation), hypertrophy (protein synthesis 316 

increase), and differentiation during myogenesis and muscle regeneration (Vandenburgh et al. 1991; 317 

Grounds 2002). According to the present results, during the fertilized eggs stage (D-1) of S. dumerili, 318 

activation of both IGF-1R and Akt was prominent prior to a contemporaneous reduction on the hatching 319 

day (D0). Expression of IGF-1R and receptor-ligand binding are linked to the development and the 320 

growth rates in which an organism is subjected to, and therefore to the circulating IGF-1 levels (Mingarro 321 

et al. 2002; Montserrat et al. 2007). Specifically, the activation of PI3K/Akt pathway in the fertilized 322 

eggs stage, as indicated by the Akt phosphorylation (Rommel et al. 2001) herein, is in accordance with 323 

previous studies that denoted the increase of phosphorylated Akt in the presence of IGFs (Montserrat et 324 

al. 2007; Fuentes et al. 2011). In rainbow trout (Oncorhynchus mykiss), IGF-1-induced-activation of the 325 

PI3K/Akt pathway was observed throughout skeletal muscle development, from myoblasts to myotubes 326 

(Castillo et al. 2006), as well as during adipogenesis (Bouraoui et al. 2010). In regard to the fertilized 327 

eggs stage, the appearance of melanophores on the embryo has occurred, while processes of embryonic 328 
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myogenesis facilitate muscle growth (Patruno et al. 1998) and the increase in myomeres number 329 

(Tachihara et al. 1993). Thus, the Akt activation observed herein may mediate hypertrophy via induction 330 

of downstream protein synthesis pathways, as has been previously described in mammals (Rommel et 331 

al. 2001; Lai et al. 2004) and teleosts (Montserrat et al. 2007; Zhao et al. 2020). 332 

Furthermore, PI3K/Akt pathway activation appears to be immensely linked to IGF-1R activation 333 

since Akt and IGF-1R showcased a similar phosphorylation pattern throughout S. dumerili development. 334 

In contrast to fertilized eggs stage, IGF-1 involvement at the 3 days post-hatching larvae (D3) appears to 335 

be lesser as observed by the decreased IGF-1R levels. The latter along with the simultaneous increase in 336 

AMPK activation would suggest a reduction of protein synthesis in S. dumerili larvae due to AMPK’s 337 

negative regulatory effect on ATP-consuming anabolic processes via inhibition of TOR activation and a 338 

positive regulatory effect on catabolic pathways including glucose and fatty acids uptake and oxidation 339 

in order to provide ATP (Goodman et al. 2011; Fuentes et al. 2013b). Interestingly, in the present study, 340 

IGF-1/Akt pathway activation displayed maximal increase during the larval-to-juvenile transition 341 

(metamorphosis), which in reared S. dumerili occurred in thirty-three days post-hatching juveniles (D33) 342 

and concurred with shifts in the feeding regime. During metamorphosis, restructure procedures at 343 

morphological, physiological, molecular and behavioral level occur in order to remodel and reorganize 344 

teleosts’ larvae into juveniles (Islam and Tanaka 2006; Mawed et al. 2022). Previous studies have 345 

reported modifications regarding head shape, fin spines length, intestinal area, and morphological and 346 

functional development of stomach, pyloric caeca and gastric glands (Pedersen and Falk-Petersen 1992; 347 

McCormick et al. 2002). Thus, in addition to a prominent role in embryonic myogenesis, IGF-1 may act 348 

as a growth stimulator through the Akt phosphorylation in order to facilitate the rapid growth rate of S. 349 

dumerili observed at this stage (Masuma et al. 1990; Papandroulakis et al. 2005). Muscle growth in 350 

teleosts involves both fiber hyperplasia and hypertrophy, and among different stages one process may 351 

prevail over the other one in terms of contribution, depending on body size, growth rate, fibre type and 352 

environmental factors (Higgins and Thorpe 1990; Koumans and Akster 1995; Silva et al. 2009). In white 353 

muscle of rainbow trout hyperplasia is the initial growth process, whose relative contribution gradually 354 

decreases and this species growth by the end is entirely due to fiber hypertrophy (Stickland 1983). 355 

Therefore, IGF-induced hypertrophic process via the PI3K/Akt pathway may occur in order to facilitate 356 

the structural reorganization and development during S. dumerili metamorphosis. 357 

 358 
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4.2. The IGF-1/MAPK pathway during S. dumerili development 359 

In addition to PI3K/Akt pathway, binding of IGF-1 to the IGF-1R activates the MAPK pathway, 360 

which mediates the hyperplastic effect for cell proliferation through the activation of p44/42 MAPK 361 

(Coolican et al. 1997). Herein, increase in the p44/42 MAPK phosphorylation was apparent on the 362 

hatching day, in contrast to reduced levels in the before-after developmental stages. Ontologically, in S. 363 

dumerili, as in many other teleosts, structures at hatching are undifferentiated including digestive tract, 364 

which appears as a straight tube of simple cubic epithelium with no external anterior and posterior 365 

opening (Masuma et al. 1990; Teles et al. 2017). Thus, both growth of existing cells and recruitment of 366 

new ones through cell division act synergistically during organogenesis in postembryonic period 367 

(Johnston and McLay 1997; Ostaszewska et al. 2008). Hyperplasia, for instance, has been demonstrated 368 

as the crucial post-hatching process for the numerical increase of teleosts’ slow muscle fibres (Veggetti 369 

et al. 1990; Johnston 2006). Previous studies denoted a spatiotemporal activation of p44/42 MAPK 370 

during embryogenesis in several species, including zebrafish (Danio rerio) (Krens et al. 2008; Wong et 371 

al. 2019). In accordance with the aforementioned hypertrophy observations, hyperplasia seems to 372 

predominate during the early S. dumerili development, while p44/42 MAPK activation may also act as a 373 

regulator of genes involved in cell migration, differentiation and patterning, as has been previously 374 

described in zebrafish (Krens et al. 2008). In addition, p44/42 MAPK signaling pathway mediates 375 

odonto/osteogenic signals and thus may modulate skeletal and teeth development of S. dumerili larvae 376 

(Ahi 2016). 377 

Following p44/42 MAPK pathway activation at hatching day, a decrease was observed herein at 378 

3 days post-hatching larvae stage. In accordance with our results, an apparent decline in hyperplasia has 379 

been reported in other teleosts, such as blackspot seabream (Pagellus bogaraveo) (Silva et al. 2009), 380 

during the first few days post-hatching, which coincides with the end of the endogenous feeding period. 381 

Despite the aforementioned reduction, the activation of p44/42 MAPK pathway remained at high levels 382 

throughout S. dumerili development, especially during metamorphosis and the subsequent forty-six days 383 

post-hatching juveniles (D46). Similar to our results, larvae undergoing an excessive proliferation have 384 

been previously reported in order to complete organs and tissues development and functionality (Yúfera 385 

et al. 2014). For instance, during metamorphosis of redbanded seabream (Pagrus auriga), proliferative 386 

events were involved in the development of several structures, such as gill and pseudobranch filaments 387 

and gastric glands (Sánchez-Amaya et al. 2007). Organs’ augmentation and establishment of functional 388 
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structures is fundamental in order for teleosts to cope with new regimes at the subsequent life stages 389 

(Sánchez-Amaya et al. 2007; Ghasemi et al. 2020). It is well known that morphogenic transitions are 390 

accompanied by changes in food consumption, which requires more complex digestive processes (Mai 391 

et al. 2005; Islam and Tanaka 2006), such as S. dumerili’s shift from rotifers to formulated fishfeed (D33) 392 

herein. Such dietary changes serve as supplier of the extra energy needed for the structural remodeling 393 

during this stage (Islam and Tanaka 2006). Therefore, AMPK activation due to increase in the AMP/ATP 394 

ratio (Goodman et al. 2011), as well as the activities of enzymes of the intermediate metabolism observed 395 

during 3 days post-hatching larvae and/or thirty-three days post-hatching juveniles may indicate the 396 

substantial energy amount consumed during morphogenic processes. However, glycolysis and lipid 397 

metabolism (as indicated by L-LDH and HOAD respectively) seem to be the main source of ATP and 398 

intermediate substrates required by biosynthesis during early development (Milman and Yurowitzky 399 

1973; Tong et al. 2017). In addition, Segner and Verreth (1995) have observed a small delay in the 400 

elevation of CS during the ontogenetic development in catfish, which coincides with the present results. 401 

Therefore metabolic processes in S. dumerili development seem to involve carbohydrate and fatty acids 402 

catabolism from fertilized eggs stage to cleavage stage, followed by fatty acids and amino acids 403 

catabolism, reflecting a switch in fuel preferenda during organogenesis and tissues formation 404 

(Lahnsteiner 2005). Thereafter, enzymatic activities in the present study decreased during both juvenile 405 

stages (D33 – D46), highlighting their role in fish development, especially in the early developmental 406 

stages. 407 

Furthermore, IGF-mediated effects including cell migration and differentiation have been also 408 

reported to involve activation of p38 MAPK signaling pathway (Zhang et al. 2005; Ren et al. 2010). 409 

Herein, p38 MAPK phosphorylation was maintained at high levels during the developmental stages of 410 

fertilized eggs and hatching day. Previous studies in both Drosophila (Suzanne et al. 1999) and zebrafish 411 

(Fujii et al. 2000) have demonstrated implications of p38 MAPK in the establishment of the initial 412 

asymmetry and axes patterning during embryogenesis. In addition, through the regulation of transcription 413 

factors, p38 MAPK has been reported to be critical during skeletal myogenesis (Keren et al. 2006) and 414 

morphogenesis (Adachi-Yamada et al. 1999) as well as in adipocytic, myogenic and neuronal 415 

differentiation (reviewed in Nebreda and Porras 2000). In accordance with our findings, Krens et al. 416 

(2006) observed constant p38a expression levels during zebrafish development. However, previous 417 

studies have described a dual role of p38 signaling in the modulation of myogenesis, in which activation 418 
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induces myocyte differentiation while p38 suppression is essential for the subsequent alignment, 419 

aggregation and fusion of the differentiated cells (Weston et al. 2003). From this standpoint, the reduction 420 

in p38 phosphorylation observed herein at 3 days post-hatching larvae stage may be crucial for the 421 

prevention of premature progression of muscle cells (Weston et al. 2003). Thus, p38 MAPK signaling 422 

pathway may actively participate in several processes throughout S. dumerili development, from 423 

regulation of early differentiation to juvenile muscle growth. On the contrary, JNK pathway activation 424 

was prominent during the S. dumerili larvae and juvenile stages. Interestingly, a previous study in 425 

zebrafish (Valesio et al. 2013) suggested a more potent role of JNK pathway at later stages of 426 

organogenesis, where programmed cell death regulation is of greater importance and thus recruits both 427 

pro-apoptotic and anti-apoptotic actions of JNK. In addition, during juvenile stages of S. dumerili p44/42 428 

MAPK activation was also evident. The latter is consistent with previous studies in which hyperplastic 429 

procedures occurs during larvae and juvenile stages, especially in species with higher growth rates, while 430 

hypertrophy is more prominent at the adult stage (Veggetti et al. 1990; Chisada et al. 2011). 431 

 432 

4.3. Heat shock proteins in S. dumerili development 433 

Regarding Hsps, a significant induction occurred from the three days post-hatching larvae stage 434 

onwards, except for Hsp90 which increased from hatching day. In accordance with the present results, 435 

an induction in Hsp90 expression was observed during the first post-hatching stages of silver sea bream 436 

(Sparus sarba) (Deane and Woo 2003). The involvement of Hsp90 during early development has also 437 

been reported in zebrafish. In specific, Krone and Sass (1994) observed differences in the expression 438 

patterns of the Hsp90α and Hsp90β isoforms during the early stages of embryogenesis. Specifically, no 439 

changes in Hsp90α expression were observed at control temperatures, whereas induction of the Hsp90β 440 

isoform was evident during somitogenesis. 441 

Concerning Hsp70, similar results indicating an increase during early larvae stages have been 442 

previously reported in zebrafish (Yeh and Hsu 2000, 2002). The induction of Hsp70 is triggered by a 443 

developmental stage-dependent activation pathway and is considered to be mediated by signals of growth 444 

or differentiation through the interaction of HSF-like factors with the promotor of the hsp70 gene (Yeh 445 

and Hsu 2000, 2002). In addition, a potential implication of Hsp70 in early zebrafish ontogenesis has 446 

been reported by Blechinger et al. (2022), where hsp70 was highly expressed during embryonic lens 447 

formation. Thus, the Hsp70 levels observed herein in fertilized eggs may indicate a role in S. dumerili 448 
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early ontogenesis. Likewise, Japanese medaka (Oryzias latipes) exhibited non-inducible Hsp70 and 449 

Hsp60 in early embryos, while levels increased later in post-hatching stages (Werner et al. 2001). 450 

Among juveniles and adult rainbow trout, Rendell et al. (2006) have indicated differentiation, in 451 

regard to the intracellular localization of Hsps, suggesting that the functions of these proteins may depend 452 

on the stage of development. For instance, as O. mykiss develops, total Hsp90 in the nucleus decreases, 453 

probably reducing the requirements for Hsp90 to function as molecular chaperones in the nuclear 454 

compartment (Rendell and Currie 2005; Rendell et al. 2006). Considering that environmental conditions 455 

in the aquaculture unit were at sustainable levels for S. dumerili, maintaining high Hsps levels during the 456 

juvenile stages may be indicative of a greater need for the molecular chaperones function (Rendell et al. 457 

2006). The importance of Hsps’ function is also attributed to their involvement in signal transduction 458 

processes, which interact with various components of signaling pathways that regulate growth and 459 

development (Pratt and Toft 1997). Therefore, higher levels of Hsps may reflect higher growth rates, 460 

higher nutritional requirements, and the constant renewal or replacement of proteins which occur at 461 

juvenile stages. However, induction of Hsps during metamorphosis stage was also apparent at silver sea 462 

bream (Deane and Woo 2003), thus indicating potential implication in cellular processes during the 463 

transition from larvae to juveniles. 464 

 465 

4.4. Cell death in S. dumerili development 466 

Alongside growth, proliferation and differentiation, programmed cell death is crucial in early 467 

animals’ development, contributing to the sequential cell turnover mandatory for organs sculpting 468 

(Penaloza et al. 2006). The apoptotic machinery seems to be active during the fertilized eggs stage of S. 469 

dumerili, as observed herein by the Bax/Bcl-2 ratio, which displayed a subsequent reduction at hatching 470 

day. Previous studies in zebrafish have reported rapid apoptotic clearance, which seems to be activated 471 

at the gastrula stage and thereafter (Ikegami et al. 1999), to be coinciding with major developmental 472 

events, such as initial outgrowth of retinal ganglion cell axons, lens separation from skin ectoderm and 473 

Rohon-Beard neurons elimination (Svoboda et al. 2001; Cole and Ross 2001). In regard to S. dumerili, 474 

several morphogenetic rearrangements occur during early embryogenesis that requisite cell death, 475 

including Kupffer cells disappearance (Tachihara et al. 1993). Cell death continues to be differentially 476 

recruited throughout development in order to facilitate the remodeling procedures such as changes in 477 

zebrafish lateral line system (Cole and Ross 2001). In a previous study, cell apoptosis mediated critical 478 
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organs’ transformative and functional changes, including eye movement and shift in swimming type, 479 

during the metamorphosis of Japanese flounder (Paralichthys olivaceus) (Baolong et al. 2006). Thus, the 480 

immense increase in caspases expression observed herein at the metamorphosis stage may be indicative 481 

of the selective apoptotic process for S. dumerili organ-restructure. However, induction of the apoptotic 482 

machinery as a cellular response to environmental stressors should not be excluded. The latter could be 483 

supported by the fact that Hsps seem to modulate temperature-dependent cell death and defense 484 

responses (Bao et al., 2014). According to Le Roith et al. (2001), anti-apoptotic signals in response to 485 

environmental stimuli have been proposed to be mediated by IGF-1 through the Akt pathway. 486 

On the other hand, mobilization of autophagy has been previously reported to occur during 487 

developmental and differentiation pathways, acting simultaneously as an energy and nutrient supplier 488 

(Mizushima and Levine 2010; Nuschke et al. 2014). The autophagic machinery is highly induced at 489 

hatching day of S. dumerili, as observed herein by the elevated LC3 II/I levels, indicating a potential 490 

involvement in yolk-sac reserves depletion. Prior to the nutritional switch from endogenous to exogenous 491 

feeding, which occurs at 3 days post-hatching larvae in S. dumerili (Masuma et al. 1990), larvae constant 492 

nutrients supply derives from the yolk-sac, which serves as the pivotal energy source for the highly 493 

metabolically demanding processes of morphogenesis (Pelegri 2003; Lee et al. 2014; Mathai et al. 2017). 494 

Implications of autophagy in early zebrafish morphogenesis and organogenesis have been proposed by 495 

Lee et al. (2014), although it is not yet clear whether it is related to differentiation and/or metabolic 496 

demands. However, induction of the autophagic process was also apparent in the subsequent thirty-three 497 

days post-hatching juveniles stage as indicated by the increased LC3 II/I ratio and the decreased 498 

SQSTM1/p62 levels. In addition to the potential involvement in the ontogeny and early development, 499 

growing animals require high constitutive levels of autophagy in order to ensure proper cell proliferation 500 

and functions (Mizushima and Levine 2010). Although ubiquitin represents a selective degradation 501 

signal suitable for targeting various types of cargo (from protein aggregates to membrane-bound 502 

organelles) (Kirkin et al. 2009), the present results showcase a differentiation in ubiquitination and 503 

autophagy patterns in the thirty-three days post-hatching juveniles. Salmerón et al. (2015) have pointed 504 

out that ubiquitin-related genes in gilthead sea bream are coordinately regulated during ontogeny, with 505 

increased levels in fingerlings compared to juveniles. Similarly, ubiquitination herein is suppressed in 506 

thirty-three days post-hatching juveniles, in which muscle growth is highly upregulated. Moreover, and 507 

contrary to our results, it has been shown that in C2C12 muscle cells, increased ubiquitin levels suppress 508 
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proliferation, which can be associated with the poor healing potential in older individuals (Cai et al. 509 

2004). 510 

Furthermore, in contrast to previous studies demonstrating induction of autophagy due to 511 

metabolic stress during the endogenous to exogenous feeding shift (Arevalo et al. 2018; Mawed et al. 512 

2022), activation of AMPK in response to the increased cellular AMP/ATP ratio observed herein at the 513 

3 days post-hatching larvae stage resulted in no elevation of the autophagic activity. Previous studies 514 

have demonstrated that swimming activates AMPK in skeletal muscles, evidencing a critical role in the 515 

metabolic and physiological adaptation to exercise (Magnoni et al. 2012, 2014). Subsequently, an 516 

increase in the autophagic activity occurred during S. dumerili metamorphosis which is in accordance 517 

with previous studies in other teleost species such as Paralichthys olivaceus (Gao et al. 2022) and 518 

zebrafish (Mawed et al. 2022). During such a fundamental turnover stage, ontogenetic procedures may 519 

recruit the autophagic machinery, as in the case of P. olivaceus where eye migration is driven by cell 520 

death at the orbital tissue (Gao et al. 2022). 521 

It is important to highlight that although both apoptosis and autophagy account for self-destructive 522 

processes, a delay on the onset of apoptosis compared to autophagy was evident in the present study. The 523 

latter could be attributed to the fact that in most cases autophagy acts as an inhibitor of apoptotic-induced 524 

cell death, by recycling cell debris (Cooper 2018). However, due to the complexity of the corporation 525 

between apoptosis and autophagy, which highly depends on the stimulus potency (Cooper 2018), the 526 

aforementioned hypothesis needs thorough investigation.  527 

 528 

5. Conclusions 529 

Collectively, development in S. dumerili seems to recruit different and several signaling pathways 530 

in each developmental stage, emphasizing their versatile roles in organogenesis and morphogenesis. 531 

Specifically, hypertrophic signaling is stimulated via the IGF-1R/Akt pathway activation during the 532 

fertilized eggs stage and larval-to-juvenile transition. Hyperplasia via p44/42 MAPK phosphorylation 533 

mediates S. dumerili post-hatching process, and juvenile organs completion. The apparent induction of 534 

Hsps at the juvenile stages suggest an immense chaperones recruitment due to higher growth rates, and 535 

higher nutritional requirements. On the other hand, apoptosis was triggered during fertilized eggs and 536 

autophagy at hatching day indicating an involvement in morphogenetic rearrangements and yolk-sac 537 

reserves depletion. AMPK activation and AMP/ATP increase during metamorphosis indicate the 538 



19 
 

substantial energy amount consumed during this process (Fig. 8). Based on the present results and the 539 

existing literature, Fig. 8 proposes signaling between the above-mentioned cellular processes. 540 

Specifically, it seems that the activation of IGF-1R and Akt in the fertilized eggs’ stage may be 541 

responsible for processes observed in later developmental stages. Information in cellular physiology 542 

regarding developmental procedures may help overcome reproductive dysfunctions which are a major 543 

obstacle in this species commercialization. However, these signaling pathways need to be further 544 

investigated in order to provide a more appropriate application in the aquaculture section ensuring the 545 

proper and integrated teleost development. 546 
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Legends to Figures 978 

 979 

Figure 1. phospho IGF-1R / IGF-1R and phospho Akt / Akt levels (mean ± std) in different 980 

developmental stages of greater amberjack (S. dumerili): 1 day prior to hatching fertilized eggs [day -1 981 

(D-1)], hatching day [day 0 (D0)], 3 days post-hatching larvae [day 3 (D3)], and thirty-three and forty-982 

six days post-hatching juveniles [day 33 (D33) and day 46 (D46)]. Representative blots are shown. 983 

Significant differences (p < 0.05) are presented between different developmental stages as lower case 984 

letters. 985 

 986 

Figure 2. phospho p38 MAPK / p38 MAPK, phospho p44/42 MAPK / p44/42 MAPK and phospho JNKs 987 

/ JNKs levels (mean ± std) in different developmental stages of greater amberjack (S. dumerili): 1 day 988 

prior to hatching fertilized eggs [day -1 (D-1)], hatching day [day 0 (D0)], 3 days post-hatching larvae 989 

[day 3 (D3)], and thirty-three and forty-six days post-hatching juveniles [day 33 (D33) and day 46 (D46)]. 990 

Representative blots are shown. Significant differences (p < 0.05) are presented between different 991 

developmental stages as lower case letters 992 

 993 

Figure 3. Hsp60, Hsp70 and Hsp90 levels (mean ± std) in different developmental stages of greater 994 

amberjack (S. dumerili): 1 day prior to hatching fertilized eggs [day -1 (D-1)], hatching day [day 0 (D0)], 995 

3 days post-hatching larvae [day 3 (D3)], and thirty-three and forty-six days post-hatching juveniles [day 996 

33 (D33) and day 46 (D46)]. Representative blots are shown. Significant differences (p < 0.05) are 997 

presented between different developmental stages as lower case letters 998 

 999 

Figure 4. Cleaved caspases, Bax and Bcl-2 levels and Bax/Bcl-2 ratio (mean ± std) in different 1000 

developmental stages of greater amberjack (S. dumerili): 1 day prior to hatching fertilized eggs [day -1 1001 

(D-1)], hatching day [day 0 (D0)], 3 days post-hatching larvae [day 3 (D3)], and thirty-three and forty-1002 

six days post-hatching juveniles [day 33 (D33) and day 46 (D46)]. Representative blots and dots are 1003 

shown. Significant differences (p < 0.05) are presented between different developmental stages as lower 1004 

case letters 1005 

 1006 
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Figure 5. Ubiquitin conjugates, SQSTM1/p62 and LC3 II/I ratio levels (mean ± std) in different 1007 

developmental stages of greater amberjack (S. dumerili): 1 day prior to hatching fertilized eggs [day -1 1008 

(D-1)], hatching day [day 0 (D0)], 3 days post-hatching larvae [day 3 (D3)], and thirty-three and forty-1009 

six days post-hatching juveniles [day 33 (D33) and day 46 (D46)]. Representative blots and dots are 1010 

shown. Significant differences (p < 0.05) are presented between different developmental stages as lower 1011 

case letters 1012 

 1013 

Figure 6. phospho AMPK / AMPK, AMP/ATP ratio, AMP and ATP levels (mean ± std) in different 1014 

developmental stages of greater amberjack (S. dumerili): 1 day prior to hatching fertilized eggs [day -1 1015 

(D-1)], hatching day [day 0 (D0)], 3 days post-hatching larvae [day 3 (D3)], and thirty-three and forty-1016 

six days post-hatching juveniles [day 33 (D33) and day 46 (D46)]. Representative blots are shown. 1017 

Significant differences (p < 0.05) are presented between different developmental stages as lower case 1018 

letters 1019 

 1020 

Figure 7. L-LDH (A), HOAD (B) and CS (C) Vmax activity levels (mean ± std) in different 1021 

developmental stages of greater amberjack (S. dumerili): 1 day prior to hatching fertilized eggs [day -1 1022 

(D-1)], hatching day [day 0 (D0)], 3 days post-hatching larvae [day 3 (D3)], and thirty-three and forty-1023 

six days post-hatching juveniles [day 33 (D33) and day 46 (D46)]. Significant differences (p < 0.05) are 1024 

presented between different developmental stages as lower case letters 1025 

 1026 

Figure 8. Summarized model of metabolic and signaling pathways in different developmental stages of 1027 

greater amberjack (S. dumerili): 1 day prior to hatching fertilized eggs [day -1 (D-1)], hatching day [day 1028 

0 (D0)], 3 days post-hatching larvae [day 3 (D3)], and thirty-three and forty-six days post-hatching 1029 

juveniles [day 33 (D33) and day 46 (D46)]. 1030 

  1031 
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Table 1. Water physicochemical characteristics (mean ± std) during the five developmental stages (D-1, 1032 

D0, D3, D33 D46) of greater amberjack (S. dumerili) 1033 

Stages T (oC) pH O2 (mg l-1) O2 (%) 

D-1 21.7 ± 1.2 7.8 ± 0.2 10.4 ± 0.4 145 ± 22 

D0 23.4 ± 1.5 7.8 ± 0.3 6.6 ± 0.23 97 ± 12 

D3 23.3 ± 1.3 7.9 ± 0.1 7.0 ± 0.4 98 ± 11 

D33 25.9 ± 1.7 8.0 ± 0.2 7.7 ± 0.3 97 ± 10 

D46 24.1 ± 1.4 8.1 ± 0.2 7.9 ± 0.4 101 ± 15  

 1034 
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Table 2 Coefficients of linear correlation (Pearson test) between the biological parameters investigated 1036 

in in different developmental stages (D-1, D0, D3, D33, D46) of greater amberjack (S. dumerili). 1037 

Significant correlation at the 0.05 level is represented with asterisk (*). 1038 

 Hsp90 Hsp70 Hsp60 p38 p44/42 JNKs 

Bax/ 

Bcl-2 Caspases Ubiquitin AMPK 

AMP/ 

ATP 

LC3  

II/I p62 Akt IGF LDH HOAD CS 

Hsp90 1 0,49* 0,45* -0,19 0,43* 0,9* 0,16 0,16 0,83* 0,38* -0,19 0,59* -0,26 -0,09 -0,14 

-

0,87* -0,42* 0,68* 

Hsp70  1 0,84* 

-

0,84* -0,21 0,24 0,42* 0,42* 0,35* 0,39* -0,13 0,49* 

-

0,38* 0,48* 0,4* -0,09 0,37* 0,56* 

Hsp60   1 -0,48 0,21 0,37* 0,16 0,48* 0,3 0,6* 0,26 0,39* 

-

0,37* 0,38* 0,41* -0,28 0,02 0,22 

p38    1 0,69* 0,18 

-

0,67* -0,23 0,003 -0,22 0,19 -0,27 0,23 

-

0,44* -0,28 -0,29 -0,74* 

-

0,53* 

p44/42     1 0,75* 

-

0,58* 0,09 0,53* 0,17 0,19 0,18 -0,07 -0,26 -0,11 

-

0,78* -0,92* -0,14 

JNKs      1 -0,25 0,23 0,87* 0,23 -0,16 0,6* 

-

0,31* -0,09 -0,06 

-

0,96* -0,77* 0,43* 

Bax/Bcl-2       1 -0,45* -0,13 0,39* 0,08 

-

0,34* 0,44* 

-

0,33* 

-

0,47* 0,19 0,68* 0,51* 

Caspases        1 0,02 0,22 0,11 0,83* 

-

0,98* 0,91* 0,92* -0,14 -0,21 -0,24 

Ubiquitin         1 -0,12 

-

0,56* 0,48* -0,1 -0,12 -0,12 

-

0,73* -0,43* 0,79* 

AMPK          1 0,78* 0,11 -0,17 -0,04 -0,04 

-

0,38* -0,13 -0,11 

AMP/ATP           1 -0,25 0,001 -0,1 -0,02 -0,04 -0,17 

-

0,66* 

LC3 II/I            1 

-

0,91* 0,69* 0,65* 

-

0,49* -0,34* 0,24 

p62             1 

-

0,87* 

-

0,85* 0,23 0,25 0,14 

Akt              1 0,98* 0,23 0,17 -0,17 

IGF               1 0,2 0,05 -0,29 

LDH                1 0,8* 

-

0,31* 

HOAD                 1 0,23 

CS                  1 

 1039 

 1040 
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