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Summary 14 

The human gut is a complex ecosystem consisting of hundreds of microbial species interacting with 15 
each other and with the human host. Mathematical models of the gut microbiome integrate our 16 
knowledge of this system and help to formulate hypotheses to explain observations. The 17 
generalized Lotka-Volterra model has been widely used for this purpose, but it does not describe 18 
interaction mechanisms and thus does not account for metabolic flexibility. Recently, models that 19 
explicitly describe gut microbial metabolite production and consumption have become popular. 20 
These models have been used to investigate the factors that shape gut microbial composition and to 21 
link specific gut microorganisms to changes in metabolite concentrations found in diseases. Here, 22 
we review how such models are built and what we have learned so far from their application to 23 
human gut microbiome data. In addition, we discuss current challenges of these models and how 24 
these can be addressed in the future.  25 

Why do we need metabolic models of human gut microbiota? 26 

Human gut microorganisms form a complex ecosystem where hundreds of microbial species 27 
interact with each other and with the human host. Mathematical models serve to describe this 28 
system, to integrate available data and to make predictions of its behavior in different conditions. 29 
Given the importance of cross-feeding and competition in the human gut (Louis et al., 2014; Sung et 30 
al., 2017), mathematical models applied to the human gut ecosystem need to take into account 31 
ecological interactions. The most popular interaction-based model is the generalized Lotka-Volterra 32 
model (gLV, (Lotka, 1925; Volterra, 1926)), which describes the change of species abundances over 33 
time as a function of their growth rates and pairwise interactions. The gLV model assumes 34 
interaction strengths to be constant. However, ecological interactions can be dynamic. For instance, 35 
Escherichia coli is known to consume acetate when glucose is depleted (Enjalbert et al., 2015). This 36 
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switch from one carbon source to another in response to scarcity is known as diauxic shift (Monod, 37 
1949). If another gut bacterium supplies acetate, a cross-feeding interaction can take place at low 38 
but not at high glucose levels. In addition, gut bacteria can change their metabolism in response to 39 
interaction partners (D'hoe et al., 2018). The gLV model, which does not describe interaction 40 
mechanisms, cannot account for this metabolic flexibility. 41 
 42 
Whether or not metabolites are considered explicitly in community models has implications for the 43 
conclusions derived from analytical or numerical studies of such models. For instance, community 44 
stability was stated to depend on the number of species and their interactions (May, 1972) and on 45 
the proportion of negative versus positive interactions (Coyte et al., 2015). Butler and O'Dwyer 46 
investigated the stability of communities with a consumer-resource model, which describes the 47 
community as a set of consumers competing for resources (for instance Bacteroides species 48 
competing for carbohydrates). They proved that for this system, any feasible solution (i.e. one with 49 
positive abundances for all species) is always stable in the sense of being robust to small 50 
perturbations ȋ������������ǯ�����ǡ�ʹͲͳͺȌ. This contrasts with the finding that a larger number of 51 
species or of interactions in random species interaction matrices increases instability (May, 1972). 52 
Butler and O'Dwyer also included producers, which allowed modeling mutualistic interactions 53 
through mutual cross-feeding of resources. In this extended consumer-producer-resource model, 54 
mutualistic interactions do not necessarily destabilize the system as in gLV-based models (where 55 
they can lead to explosive growth) but can give stable solutions in specific cases.  56 
 57 
Modeling metabolites explicitly also matters when predicting system behavior. For instance, 58 
Momeni and colleagues showed that the gLV model fails to describe the dynamics of two species 59 
competing for one metabolite while cross-feeding a second one (Momeni et al., 2017). Finally, 60 
metabolic flexibility questions the previously postulated universality of microbial interaction 61 
networks (Bashan et al., 2016), since it implies that microorganisms can change their interactions 62 
depending on the presence of other species. Due to its simplicity, relatively small number of 63 
parameters and ease of handling large species numbers, the gLV is widely used to model the 64 
dynamics of microbial communities. However, its inability to handle flexible metabolic responses 65 
means that in many cases it does not meet ��������ǯ�������� "as simple as possible but not simpler" 66 
criterium. Here, we will present metabolite-explicit modeling approaches1 as alternatives to gLV 67 
model, review the insights resulting from their application to human gut microbiota and discuss 68 
their challenges. 69 

How do we include metabolic information? 70 

Metabolic information can be included at different levels of resolution. Depending on the available 71 
data and the question, the internal metabolism of a cell can be modeled explicitly or treated as a 72 
black box. Kinetic models follow the latter strategy and simplify the system further by focusing on 73 
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growth-limiting nutrients. The generic kinetic equation for a microorganism growing on a single 74 
growth-limiting substrate in a chemostat is:  75 
 76 

݀ܺ
ݐ݀

ൌ ሺܵሻܺߤ െ ܺ 77 

݀ܵ
ݐ݀

ൌ െ
ሺܵሻߤ

ܻ ௌΤ
ܺ  ሺߔ ܵ െ ܵሻ 78 

 79 
where X is the biomass, S the concentration of the nutrient, YX/S the yield, I the flow rate, and Sin the 80 
concentration of the nutrient in the inflowing medium. At high nutrient concentrations, the growth 81 
rate is no longer limited by nutrient availability but rather by the speed of the processes involved in 82 
cell division or the enzyme-limited rates of biochemical reactions and thus the effect of nutrients on 83 
the growth rate becomes negligible. This saturation effect is commonly expressed with the Monod 84 
function: 85 
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where K is the half saturation constant or Monod constant. When several limiting substrates are 87 
present, kinetic models require knowledge on the logic of nutrient use, as described in Figure 1. 88 
This logic usually needs to be established through experiments (D'hoe et al., 2018; Schmidt et al., 89 
2011). 90 
 91 
The consumer-resource model was first introduced to describe resource competition (MacArthur, 92 
1970) and has since been adapted to model production and consumption of metabolites in 93 
microbial communities (Marsland et al., 2020). It relies on the additivity assumption and can be 94 
seen as a simplified kinetic model. As such, it does not fully capture the metabolic logic that 95 
characterizes the behavior of many microorganisms but can be scaled up more easily to large 96 
communities.  97 
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 98 
	������ͳǣ����������������������������������������������������������������Ɋmax and the Monod constant. 99 
They also require knowledge on whether a nutrient is required (obligate), whether it can be replaced by 100 
another (alternative) and, if this is not the case, whether another nutrient can still boost growth. The lower 101 
panel illustrates how kinetic models can implement diauxic shifts. Function fswitch expresses the switch from 102 
growth on S1 (when S1 is high) to growth on S2 (when S1 goes below threshold Ks). 103 
 104 
While kinetic models require knowledge on metabolic behavior, the promise of genome-scale 105 
metabolic models (GEMs) is that such knowledge can be derived ab initio from the genome. During 106 
metabolic reconstruction, enzyme-coding genes are identified and linked to reactions, resulting in a 107 
stoichiometric matrix A that represents the metabolic network of the cell. While automated 108 
metabolic reconstruction can be carried out in minutes (using pipelines such as ModelSEED (Seaver 109 
et al., 2021)), high-quality metabolic reconstruction requires manual curation that can take months 110 
(Thiele and Palsson, 2010). In a metabolic network, the rate of change in metabolite concentrations 111 
is expressed as a linear equation system: 112 
 113 
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 115 
where S is the vector of metabolite concentrations, ܣ is the stoichiometric matrix and ݒ is a vector 116 
of reaction fluxes. Flux balance analysis (FBA) assumes that intracellular metabolites are at steady 117 
state, such that their net sum is zero: 118 
 119 
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 121 
For most metabolic networks, this system contains more unknowns (i.e. fluxes) than equations and 122 
has thus an infinite number of solutions. FBA overcomes this challenge by assuming that the cell 123 
optimizes fluxes according to certain criteria such as maximizing the production of ATP molecules 124 
or the flux through an (artificial) biomass reaction that represents cell growth. These criteria are 125 
defined in the objective function (z). Additional constrains are given by limiting reaction fluxes to a 126 
range that is biologically feasible. A solution is then found by linear programming. 127 
 128 
Since standard FBA assumes a steady state, it cannot model situations where nutrient 129 
concentrations change, e.g. in batch processes. Dynamic FBA was introduced to overcome this 130 
limitation (Henson and Hanly, 2014; Mahadevan et al., 2002). It describes changes in biomass and 131 
substrates with ordinary differential equations (ODEs), which are coupled to static FBA through 132 
growth rate (i.e. flux through the biomass reaction) and substrate production and consumption 133 
rates. FBA solutions are computed iteratively for each time step to update these rates. Thus, 134 
dynamic FBA can be seen as a combination of FBA and a kinetic model. 135 
 136 
FBA was designed for single species, but both static and dynamic forms of FBA have been extended 137 
to communities (recently reviewed in (Heinken et al., 2021)). As in kinetic models, ecological 138 
interactions between species are modeled through nutrient production and consumption, which 139 
allows describing commensalism (cross-feeding), mutualism (mutual cross-feeding) and 140 
competition. Community FBA approaches can be classified according to their flux optimization 141 
strategy into (i) group, (ii) individual and (iii) data-driven approaches (Figure 2A). A 142 
straightforward implementation of the first strategy is to select species-specific growth rates such 143 
that they maximize a weighted sum across all community members (Stolyar et al., 2007). A 144 
generalization of this idea is to compute the Pareto front by fixing the flux through the biomass 145 
reaction of one species while optimizing the flux through that of the other species and vice versa for 146 
a range of biomass flux values. The point on the Pareto front giving the largest combined biomass 147 
flux corresponds to the Pareto-optimal solution (Budinich et al., 2017; Heinken et al., 2013). The 148 
idea of optimizing the community biomass is also implemented in CASINO (Shoaie et al., 2015) and 149 
SteadyCom (Hung et al., 2017). The second group of community FBA tools optimizes the flux 150 
distribution of each species independently of the other species, i.e. without a community-level 151 
objective function (Dukovski et al., 2021; Popp and Centler, 2020; Zhuang et al., 2011). Finally, tools 152 
such as the Microbiome Modeling Toolbox and MICOM optimize growth rates such that observed 153 
species proportions are reproduced (Baldini et al., 2019; Diener et al., 2020). 154 
 155 
The assumption that the metabolic network optimizes an objective function can also be relaxed. For 156 
this, the space of all conditions that sustain growth can be explored by taking uniform samples from 157 
the viable fluxes (Herrmann et al., 2019; Schellenberger and Palsson, 2009), as illustrated in Figure 158 
2B.  159 
 160 
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 161 
Figure 2: A) Community FBA represents ecological interactions between species indirectly through 162 
metabolite production and consumption. There are three strategies to optimize flux distributions in 163 
communities: by optimizing both individual and group-level growth rates (group), by only optimizing 164 
individual growth rates (individual) and by optimizing growth rates such that measured proportions are 165 
reproduced (data-driven). B) FBA finds the point in the solution space of flux distributions that optimizes an 166 
objective function, usually growth rate (i.e. the flux through the artificial biomass reaction). In contrast, flux 167 
sampling finds random flux distributions in the solution space, which allows estimating the probability 168 
distribution for each of the fluxes.  169 
 170 
Table 1 summarizes metabolite-explicit modeling techniques that have been applied to human gut 171 
microbiota. Three modeling approaches, namely kinetic modeling, dynamic community FBA and flux 172 
sampling, are also illustrated in Box 1 on a toy model featuring three artificial gut bacteria, each 173 
representing a metabolic niche (carbohydrate degrader, butyrate producer and acetogen).   174 
 175 

Box 1: Toy model 
To illustrate different metabolite-explicit modeling approaches, we consider simplified 
representatives of three functional groups found in human gut microbiota, namely a carbohydrate 
fermenter, an acetogen and a butyrate producer, which are co-cultured in chemostat (A). They all 
require and thus compete for glucose, which is continuously supplied in the chemostat. The 
carbohydrate fermenter produces acetate and formate, the former of which is consumed by the 
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butyrate producer and the latter by the acetogen. In addition, the acetogen and the butyrate 
producer mutually cross-feed: the acetogen produces acetate that boosts the growth of the 
butyrate producer, while the latter releases carbon dioxide (and hydrogen), which provides an 
alternative to formate as obligatory second carbon source for the acetogen. 

This system can be described with a kinetic model in the form of ordinary differential equations 
(ODEs, B). Numerical integration of these ODEs gives the dynamics of each variable (C). The kinetic 
model can also be used to predict species abundances as a function of control parameters, e.g. the 
flow rate (D). Parameter values are given in Supplementary Table 1. 
 

  A 

  
 

  C 

  

   B 

 
 

   D 

 
 

To investigate intracellular fluxes, a metabolic model of the system is needed. For this, we designed 
simplified metabolic networks for each species (Supplementary Figure 1). The optimal steady-state 
fluxes (E) were computed with flux balance analysis given ATP production, NAD+ recycling, and coA 
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acetylation as toy biomass objective functions (Supplementary Table 2), while possible flux 
distributions are explored with flux sampling (F). Figure G displays the composition for six 
permutations of the community and the resulting scaled biomass fluxes and metabolic environment 
predicted with MAMBO (Garza et al., 2018). Dynamic flux balance analysis (H) describes the change 
of species abundances and metabolite concentrations over time (I), which in this toy system are 
qualitatively similar to those found with the kinetic model (D). However, the growth rates and 
metabolite interdependencies emerge from the reconstructed networks. 
 

 
 176 
Table 1: Summary of metabolite-explicit community model approaches applied to human gut microbiota. The 177 
list of tools given for each modeling approach is not exhaustive. 178 
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Model input and 
output  

What can we 
learn from the 
model 

Tools  Comments Main 
limitations 

Flux Balance 
Analysis 

Input: a 
stoichiometric 
matrix per species 
representing its 
metabolism; 
constraints on 
fluxes; medium 
definition 

Output: flux 
distribution of 
each species 
optimizing an 
objective function, 
for dynamic FBA: 
flux distribution of 
each species 
(optimal at 
current time 
point) and 
metabolite 
concentrations 
over time  

- Individual 
growth rates at 
steady state 
and resulting 
community 
composition 
for a given 
medium 

- Internal fluxes, 
production 
and 
consumption 
rates and 
external 
metabolite 
concentrations 
derived from 
these 

- dFBA: 
community 
dynamics 

- SteadyCom 
(static FBA, 
(Hung et al., 
2017)) 

- CASINO (bi-level 
optimization, 
(Shoaie et al., 
2015)) 

- Microbiome 
Modeling 
Toolbox (Pareto 
optimality and fit 
to observed 
abundances, 
(Baldini et al., 
2019)) 

- MICOM 
(optimization to 
fit observed 
abundances) 

- BacArena and 
COMETS 
(dynamic FBA on 
a grid, (Bauer 
and Thiele, 2018; 
Dukovski et al., 
2021)) 

- Ɋ��������and 
DMMM 
(optimization of 
each species 
independently of 
the others in a 
dynamic FBA, 
(Popp and 
Centler, 2020; 
Zhuang et al., 
2011)) 

- Can be embedded in a 
spatial structure (e.g. 
(Chan et al., 2019; 
Hoek and Merks, 
2017)) 

- Depends on 
correct 
reaction 
annotations 

- Depends on 
an objective 
function 

- Dynamic FBA 
requires 
kinetic 
parameters 

Sampling-based 
approaches 

Input: a 
stoichiometric 
matrix per species 
representing its 
metabolism, 
species 

- High 
probability 
flux 
distributions 

- Degree of 
certainty of 
FBA 
predictions 

- Metabolome 

- optGpSampler 
(Megchelenbrink 
et al., 2014) 

- CHRR 
(Haraldsdóttir et 
al., 2017) 

- MAMBO 
(samples fluxes 
to fit observed 

- Often applied to single 
species 

- May include specific 
scenarios (e.g. 
distribution that best 
explains 
experimentally 
measured growth 
rates (Martino et al., 

- Depend on 
correct 
reaction 
annotations 

- Computationa
lly challenging 

- Depend on 
paired 
metabolite 
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abundances or 
growth rates for 
MAMBO 

Output: a set of 
possible flux 
distributions from 
the solution space  

that best 
explains the 
species 
distribution 

species 
abundances to 
predict 
metabolite 
concentrations, 
(Garza et al., 
2018)) 

 

2018)  and 
composition 
data for 
validation 

Consumer- 
resource model 

Input: matrix of 
uptake and 
production rates 
for each 
metabolite per 
species, growth 
rates, initial 
metabolite 
concentrations 
and species 
abundances  

Output: microbial 
abundances and 
concentrations of 
key metabolites 
over time 

- Prediction of 
community 
composition 
and metabolite 
concentrations 

  

- Trophic model 
(coupled 
consumer-
resource models, 
(Wang et al., 
2019)) 

- Community 
simulator 
(Marsland et al., 
2020) 

- Mostly used 
qualitatively (e.g. 
ȋ������������ǯ�����ǡ�
2018; Niehaus et al., 
2019))  

- Special case of the 
kinetic model 

- Depends on 
biochemical 
knowledge of 
each species 
or functional 
group 

- Requires 
kinetic 
parameters 

- Does not take 
into account 
metabolic 
flexibility 

Kinetic model  

Input: knowledge 
on essential and 
boosting nutrients 
and metabolite 
production, 
growth rates, 
initial metabolite 
concentrations 
and species 
abundances 

Output: microbial 
abundances and 
concentrations of 
key metabolites 
over time 

- Prediction of 
community 
composition 
and metabolite 
concentrations  

 

- microPop 
(kinetic model of 
functional 
groups in human 
gut microbiota, 
(Kettle et al., 
2018)) 

- Spatial extension 
of microPop 
(Smith et al., 
2021) 

- Can be embedded in a 
spatial structure 
through 
compartments or 
partial differential 
equations (e.g. 
(Muñoz-Tamayo et al., 
2010)) 

- Depends on 
biochemical 
knowledge of 
each species 
or functional 
group 

- Requires 
kinetic 
parameters 

- Does not 
account for 
internal fluxes  

Topological 
metabolic model 

Input: metabolic 

- Prediction of 
media 
supporting 

- NetCmpt and 
NetCooperate 
(compute 

- Applied in 
combination with co-
occurrence to fecal 

- No 
quantitative 
predictions  
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network of each 
species 

Output: seed set 
(metabolites not 
produced by the 
network) for each 
organism; can be 
used to compute 
interaction 
potential 

growth 
- Prediction of 

cross-feeding 
and 
competitive 
relationships 
from metabolic 
complementari
ty or overlap  

- Identification 
of key species 
carrying out 
bottleneck 
reactions 

competitive and 
cooperative 
potential, 
respectively, 
(Kreimer et al., 
2012; Levy et al., 
2015)) 

- Metage2Metabo 
(Belcour et al., 
2020) 

metagenomics data to 
assess prevalence of 
habitat filtering (Levy 
and Borenstein, 2013) 

What did we learn from metabolite-explicit models of human gut 179 

microbiota?  180 

Human gut microbial composition varies along the entire human gastrointestinal tract of each 181 
individual (Zhang et al., 2014). The small intestine is dominated by bacterial species of the families 182 
Lactobacillaceae and Enterobacteriaceae (Donaldson et al., 2016) while the colon with slower 183 
transit time is enriched in more densely growing and diverse species of the families Bacteroidaceae, 184 
Prevotellaceae, Rikenellaceae, Lachnospiraceae and Ruminococcaceae, which are capable of breaking 185 
down resistant polysaccharides derived either from the insoluble dietary fiber or colon mucus 186 
(Donaldson et al., 2016; Sauvaitre et al., 2021; Zhang et al., 2014). The gastrointestinal system 187 
provides microhabitats, such as the lumen of the large intestine, mucus layers and colonic crypts, 188 
which feature distinct microbiota (Tropini et al., 2017). Figure 3 summarizes the factors shaping 189 
gut microbiota that are considered in the models discussed below. Different models emphasize 190 
different subsets of these factors. 191 
 192 
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 193 
Figure 3: Summary of the components and processes that metabolite-explicit models of human gut 194 
microbiota take into account. A) Most spatial models focus on the colon, distinguish between lumen and 195 
mucus and account for water absorption, nutrient degradation by gut microbiota and short-chain fatty acid 196 
(SCFA) production. A few models also consider oxygen released by epithelial cells and the interplay between 197 
metabolites, microorganisms, and pH. Created with BioRender.com. B) The spatial distribution of microbial 198 
species and metabolites along the gut can be described by a compartment model consisting of a series of well-199 
mixed bioreactors. Each compartment can be further divided into lumen and mucus. Peristaltic mixing (white 200 
arrows) generated by contractions of colonic walls induces a backflow preventing washout due to the 201 
continuous flow through the gut (black arrows). When the peristaltic-induced diffusion D is large enough and 202 
the flow rate ɋ�not too high, a stable spatial profile of bacterial density (reflected by the blue gradient) can be 203 
established.  204 
 205 
Metabolite-explicit models of gut microbiota accounting for spatial structure 206 
The model developed by Muñoz-Tamayo and co-authors takes both longitudinal and cross-sectional 207 
spatial structure into account by introducing compartments representing the proximal, transverse, 208 
and distal colon, each of which is further divided into mucus and lumen. It describes the dynamics 209 
of key metabolites such as short-chain fatty acids (SCFAs), glucose and gasses as well as the 210 
abundances of four functional groups (glucose consumers, lactate consumers, acetogens and 211 
methanogens) with ODEs. The model also accounts for microbial aggregation, for instance on food 212 
particles and mucus, and absorption of metabolites (Muñoz-Tamayo et al., 2010). Model predictions 213 
agreed with observed ratios of acetate, propionate and butyrate and reproduced the observed 214 

A

B
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increase in SCFA and gas production with higher levels of fiber (Topping and Clifton, 2001). In 215 
addition, the model predicted that microbial aggregation is necessary to reproduce observed high 216 
fiber degradation rates and high microbial densities.  217 
  218 
Cremer and colleagues investigated the effect of fluid dynamics on microbial densities with a partial 219 
differential equation (PDE) model (Cremer et al., 2016). The model predicted that contractions of 220 
the intestinal walls leading to peristaltic mixing are essential to prevent microbes to be washed out 221 
(Figure 3B)Ǥ������������������������������������������������������ȋǲ�������ǳȌ�������������������222 
effect of peristaltic mixing through membrane valves, thereby demonstrating the importance of 223 
peristalsis as a factor shaping gut microbiota. In a next step, the authors modified the model to 224 
investigate the role of water absorption and nutrient inflow on the ratio of Firmicutes and 225 
Bacteroidetes (now Bacteroidota, (Oren and Garrity, 2021)). The model also included pH as a 226 
function of the concentrations of SCFA (Cremer et al., 2017). According to the model, Bacteroidota 227 
dominate the gut microbiota at low nutrient inflow and water uptake rates whereas Firmicutes 228 
dominate at high inflow and water uptake rates. High water absorption increases SCFA 229 
concentrations and thus lowers the pH, thereby giving Firmicutes an advantage over Bacteroidota 230 
that grow less well at low pH. The model reproduced the observed enrichment of Firmicutes in 231 
fecal samples with low Bristol stool score (indicating low water content) and vice versa of 232 
Bacteroidota in samples with high Bristol stool score (Falony* et al., 2016).  233 
 234 
Following up on the work of Tamayo et al., Labarthe and colleagues investigated drivers of spatial 235 
organization of colon microbiota with a 2-dimensional PDE model that distinguished between 236 
proximal, transverse and distal colon as well as mucus and lumen and that considered fluid 237 
dynamics (viscosity and flow), peristalsis, absorption of water and SCFA at the mucosal wall and 238 
metabolite concentrations (Labarthe et al., 2019). The gut microbial community was again divided 239 
into four functional groups, including primary fermenters consuming fiber and mucus, lactate 240 
consumers, acetogens and methanogens. The model also accounted for active bacterial motion 241 
(swimming). As with the preceding ODE model, the authors were able to reproduce observed 242 
microbial densities and SCFA ratios. As expected, the model predicted that a high-fiber diet leads to 243 
a peak in microbial activity in the distal colon and higher microbial densities. However, it also 244 
predicted higher transit speeds in this case, since fibers accumulating near the epithelial wall 245 
reduce water availability. Furthermore, the model underlined the role of the mucus layer in 246 
maintaining high microbial densities through mucus-derived metabolites and reduced local flow 247 
rates (slowdown zones). The importance of these slowdown zones was illustrated by fluorescently 248 
colored mouse gut species observed in situ, which reached higher densities closer to the mucus 249 
layer (Welch et al., 2017). Furthermore, the model suggested that active swimming of the bacteria 250 
enhances carbohydrate consumption.  251 
 252 
The models discussed so far do not take the internal metabolism of microbial cells into account. 253 
Recently, van Hoek and Merks employed GEMs within a spatially structured (tube-like) 254 
environment to investigate the evolution of cross-feeding (Hoek and Merks, 2017). They created 255 
ǲ������������ǳǡ������������������������������������������������������������ǡ���������������256 
evolution by stepwise deletion and reintroduction of reactions. They found that metabacteria with 257 
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initially the same metabolism specialize to take on different metabolic roles and stratify spatially, 258 
and that this niche specialization is lost with faster transit time. Thus, faster transit time reduces 259 
microbial diversity, which agrees with results from cohort studies (e.g. (Vandeputte et al., 2016)). 260 
Chan and coworkers embedded GEMs within a spatial structure to explore the effect of oxygen on 261 
the distribution of aerobes and anaerobes in the mucus and lumen of different intestinal sections, 262 
which vary in oxygen availability (Chan et al., 2019). They applied SteadyCom, a static FBA tool 263 
(Hung et al., 2017), to model microbial metabolism in the mucus and DMMM (Dynamic Multi-264 
species Metabolic Modeling), a form of dynamic FBA (Zhuang et al., 2011), for the changing 265 
conditions in the lumen. In their simulated five-species community, Corynebacterium glutamicum 266 
was only present in luminal and mucosal communities of the small intestine, which agrees with the 267 
previous report of its absence in fecal samples (Albenberg et al., 2014). Spatially embedded GEMs 268 
are also applied to predict the outcome of perturbations. For example, CODY (COmputing the 269 
DYnamics of the gut microbiota) was developed to predict the effects of dietary interventions on 270 
gut microbiota (Geng et al., 2021). CODY combines three connected models that represent the gut 271 
bacterial metabolism (ECMF), the interactions between gut bacteria (HRAF) and the spatial 272 
structure of the gut (SPCF), respectively. To build the ECMF, GEMs of eight bacterial species were 273 
simplified by extracting feasible metabolic pathway modules, which were then combined with a 274 
regulation layer that allows simulated gut bacteria to switch between pathway modules depending 275 
on conditions. The SPCF models the spatial structure of the gut with a series of compartments 276 
representing different colon sections as well as lumen and mucus and also accounts for water 277 
absorption, microbial detachment, and peristaltic mixing. ECMF and SPCF are connected through 278 
the HRAF, which first distributes dietary carbohydrates to species according to their local 279 
abundances, and then generates degradation products with the ECMF, accounting for microbial 280 
interactions through metabolite exchange. CODY successfully predicts changes in both fecal 281 
microbial abundances and plasma metabolite concentrations in two dietary intervention cohorts. 282 
 283 
Metabolite-explicit models of gut microbiota without spatial structure 284 
Several metabolite-explicit modeling approaches do not account for spatial structure and instead 285 
model the human gut microbiota as a well-stirred system.  286 
 287 
Kinetic models are predominantly applied in vitro, where it is easier to obtain time series of 288 
metabolite concentrations and biomass needed to derive uptake, consumption and growth rates. 289 
Kinetic models can have a purely descriptive function, for instance to model the conversion of 290 
lactate and acetate to butyrate and bacterial biomass (Muñoz-Tamayo et al., 2011), but they can 291 
also be predictive. This was tested for several synthetic gut communities (D'hoe et al., 2018; Pinto 292 
et al., 2017; Wey et al., 2014), where a kinetic model parameterized on monocultures predicted 293 
community dynamics in two cases. However, this approach failed for a community consisting of 294 
Faecalibacterium prausnitzii, Roseburia intestinalis and Blautia hydrogenotrophica, for which data 295 
from species pairs were required to reproduce community dynamics (D'hoe et al., 2018). 296 
Transcriptomics confirmed that these gut bacteria alter their metabolism in the presence of 297 
interaction partners. In addition, community composition and consequently butyrate production 298 
depended sensitively on initial conditions.  299 
 300 
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Going a step further, Kettle and coauthors applied a kinetic model to a complex gut community, i.e. 301 
a bioreactor inoculated with a fecal slurry (Kettle et al., 2015). Species were assigned to ten 302 
functional groups based on their main substrates and/or products (e.g. lactate producers, acetogens 303 
etc.). Each functional group was instantiated with ten strains that took random values for the 304 
kinetic parameters within given limits. In a form of parameter screening, the authors then 305 
performed 100 simulations to find strain combinations that led to functional group abundances and 306 
metabolite concentrations close to those observed in the bioreactor. The authors then simulated 307 
perturbations and compared resulting biomass and metabolite concentrations to the experimental 308 
data. For instance, they found that Bacteroides dominates the community at high (6.5) pH, but not 309 
at lower (5.5) pH. They also predicted that omitting the functional group of Bacteroides results in 310 
an increase in butyrate. In addition, when decreasing the number of strains per functional group, 311 
the variability of strain abundances and metabolite concentrations increased, which is interesting 312 
since disease-associated gut communities often have fewer species (Mosca et al., 2016) and are 313 
more variable (Zaneveld et al., 2017) than healthy ones. In a next step, Wang and colleagues applied 314 
the kinetic model of Kettle and colleagues to interpret observations in continuous bioreactors 315 
seeded with fecal slurries from different donors and supplied with lactate (Wang et al., 2020). To 316 
reproduce experimental findings, the model needed to be extended with an inhibitory effect of 317 
lactate on all functional groups except lactate producers. This growth inhibition was confirmed 318 
experimentally for several gut bacterial species in monoculture at low (5.5) pH and suggests an 319 
important role of lactate producers and consumers in the human gut ecosystem.  320 
 321 
Wang and colleagues rely on the combination of several consumer-resource models, each one 322 
��������������ǲ�������������ǳ, to model complex gut microbial communities (Wang et al., 2019). The 323 
trophic levels correspond to primary, secondary, and tertiary fermentation, where polysaccharides 324 
are first degraded to monosaccharides and acids, which are then converted by secondary 325 
fermenters to SCFAs. Acetogens, sulfate-reducing bacteria and methanogens, which grow on the 326 
byproducts of secondary fermenters, are considered as tertiary fermenters. The species-metabolite 327 
matrices for each level were taken from a gut microbial interaction network compiled from the 328 
literature (Sung et al., 2017), and a number of simplifying assumptions were made to fill in uptake 329 
and consumption rates. Each level produces metabolites that are fed to the next level, but 330 
metabolites and species can appear on more than one level. The trophic model requires microbial 331 
abundances derived from sequencing data to know which species are present in each level and then 332 
predicts the metabolites that remain after nutrients have passed through several levels. After 333 
having varied the number of trophic levels in the model, the authors concluded that four such levels 334 
lead to the best agreement of predicted metabolites with fecal metabolomics data.  335 
 336 
In contrast to kinetic models, metabolic models do not require parameters when assuming steady-337 
state conditions, but they often require abundance data to compute flux distributions in the 338 
community. Metabolic models have been applied to data from several disease cohorts to link 339 
changes in metabolite profiles to gut microbial species. For instance, the Microbiome Modeling 340 
Toolbox was employed to �����������������������������������������͵ͳ����������ǯ���������������341 
28 matched controls (Hertel et al., 2019), using the AGORA collection of metabolic reconstructions 342 
of human gut bacteria (Magnúsdóttir et al., 2017). These models predicted an overrepresentation of 343 
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�������������������������������ǯ���������ǡ��������������������������������d increase in 344 
metabolites involved in the transsulfuration pathway. Transsulfuration is involved in the 345 
production of taurine-conjugated bile acids, which are associated with lower disease risk. In the 346 
metabolic models, Akkermansia muciniphila and Bilophila wadsworthia were significant 347 
contributors to hydrogen sulfide and sulfite secretion, respectively. Based on these results, Hertel 348 
and colleagues proposed that gut bacteria remove taurine from conjugated bile acids, thereby 349 
modulating the severity of Park�����ǯ���������Ǥ�������������������ǡ�
������������������������350 
metabolomics data from colorectal cancer (CRC) patients to identify gut bacteria that have a growth 351 
advantage in CRC patients (Garza et al., 2020). For this, a basal gut medium was first derived from 352 
stool metagenomes with MAMBO (Garza et al., 2018) and 29 metabolites enriched in CRC were 353 
removed one by one from this medium to explore their effect on growth in silico. The growth of 354 
bacterial genera observed to be enriched in CRC was predicted to be significantly affected by the 355 
removal of CRC metabolites but not of random metabolites. Thus, metabolic models helped to 356 
unravel mechanisms connecting gut microbiota to diseases.  357 

What are the challenges of metabolite-explicit models?  358 

Metabolic models require the construction of GEMs, which comes with several challenges. Many-to-359 
many relationships between genes and functions (e.g. isoenzymes and multifunctional enzymes) 360 
make it hard to identify the correct set of genome-encoded reactions. For GEMs to accurately 361 
recapitulate microbial metabolism and predict growth rates, the chemical composition of the 362 
environment (medium) needs to be known and the biomass reaction needs to reflect the ����ǯ��363 
composition correctly. Obtaining such measurements is work-intensive and not possible for 364 
uncultured microbes. In addition, the assumption that evolution has led to the maximization of 365 
growth rates may not always be true (Segrè et al., 2002). For example, some cells may invest in 366 
slower growth but higher yield (Wortel et al., 2018). Furthermore, environmental factors such as 367 
pH or osmotic pressure are difficult to account for in GEMs (Bernstein et al., 2021). In communities, 368 
objective functions are particularly challenging to define. Optimizing the objective function of each 369 
species independently from the others is not suited for mutualistic relationships, where partners 370 
have co-evolved to optimize a combined metabolic network, or for instances of group selection e.g. 371 
in host-associated communities. Strategies that jointly optimize objective functions of different 372 
species handle these cases better, but they do so at the cost of being unable to accurately describe 373 
exploitative relationships, where a species grows at the expense of another even if that lowers the 374 
overall biomass. As we have seen, some tools circumvent this dilemma by optimizing the objective 375 
function to reproduce observed species abundances, but that also means that they can no longer 376 
predict community composition for a given set of species. Contrary to FBA, flux sampling does not 377 
depend on an objective function. However, the distribution of fluxes during microbial growth is the 378 
result of evolutionary processes, which may not be accurately predicted from uniformly sampling 379 
the flux space of the stoichiometric matrix. Nevertheless, working with flux distributions instead of 380 
a single solution accounts better for the observed variability of fluxes (Wintermute et al., 2013) and 381 
novel methods may be devised to obtain flux distributions that accurately reflect experimental data 382 
(Martino et al., 2018). Finally, FBA and flux sampling approaches can only model metabolite-383 
mediated ecological interactions. They are not designed to handle interference competition through 384 
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direct killing mechanisms (such as Type VI secretion systems) or to model exploitation, where one 385 
organism consumes or parasitizes another. Thus, metabolic models do not cover the whole range of 386 
ecological interactions. 387 
 388 
Kinetic models avoid the challenges posed by GEM construction and objective functions and make it 389 
easier to include ecological interactions that are not mediated by metabolites. However, they 390 
require more system knowledge in the form of kinetic parameters and equation structure. 391 
Furthermore, the equations are often over-simplistic and may not generalize when conditions 392 
change. For example, based on monoculture experiments (Porter and Larsbrink, 2022), a kinetic 393 
model could represent a Bacteroides species with equations for carbohydrate consumption and 394 
production of a number of fermentation products such as acetate, lactate, succinate, and formate. 395 
However, its metabolic network suggests that an external supply of CO2 would allow Bacteroides to 396 
reduce more fumarate to succinate (Fischbach and Sonnenburg, 2011), so that it no longer needs to 397 
produce lactate. If other bacteria depend on lactate as energy source, then CO2 would change the 398 
dynamics. It is an open question how to take advantage of the knowledge encoded in the metabolic 399 
network without the unrealistic assumptions introduced by FBA. One approach is coarse-graining 400 
the metabolic network into a much smaller set of key reactions, which retain the metabolic 401 
flexibility of the system and can still fit the available experimental data. The system can be 402 
described and simulated by a set of deterministic or stochastic ODEs. For a first approximation, one 403 
may focus on the central carbon and energy pathways, collapsing linear pathways into single 404 
equations while retaining their substrates and products. We illustrate this on a coarse-grained 405 
approximation to the toy model illustrated in Box 1 (Supplementary Figure 2). 406 
Both kinetic and metabolic models can describe heterogeneity on the population level through 407 
individual-based modeling, which is for instance implemented in GutLogo (Lin et al., 2018) and 408 
BacArena (Bauer et al., 2017). In contrast to metabolic models, kinetic or coarse-grained models 409 
can also be implemented as stochastic models that account for molecular noise (Lecca, 2013) as 410 
shown in the example (Supplementary Figure 2).  411 
 412 
Metabolite-explicit community models are challenging to validate comprehensively. It is 413 
straightforward to compare predictions of fecal microbial composition and metabolite 414 
concentrations to measurements. However, species abundances predicted for different colon 415 
segments or the effect of the removal of a functional group are harder to confirm. The hardest 416 
predictions to test are those of species-specific uptake and consumption rates as well as internal 417 
fluxes in a community context. Kinetic parameters are usually obtained from measurements in 418 
monoculture and may change in a community. Although metatranscriptomics indicates which 419 
pathways are active in which species, enzyme expression levels are not equivalent to fluxes and do 420 
not provide uptake or consumption rates. Although reaction rates can be measured at the 421 
����������������ȋ�Ǥ�Ǥ�������������Ȍǡ�����������������������ǯ�������������������������������������������422 
great challenges in microbial ecology. Advances in single-cell technologies, in particular Raman 423 
microspectroscopy (Hatzenpichler et al., 2020), offer new tools to tackle this problem. For instance, 424 
Chisanga and colleagues were able to derive the kinetics of substrate uptake in Escherichia coli with 425 
both Raman and Fourier-transform infrared spectroscopy by measuring spectral shifts in single 426 
cells in vivo (Chisanga et al., 2021). It may be possible to extend this approach to communities. 427 
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 428 
When validation data are scarce, there is a risk of overfitting. It is of note that despite their 429 
substantial differences in assumptions and structure, several models were able to predict 430 
metabolite concentrations in fecal samples. This may be due to overfitting, which would imply that 431 
the structure of these models is not as informative as we hope it to be. A model with many 432 
parameters increases the risk of overfitting, and thus the complexity of a metabolic model should 433 
be adapted both to its purpose and the available data. In the absence of sufficient data, a black-box 434 
approach to the prediction of fecal metabolites from sequencing data such as MelonnPan (Mallick et 435 
al., 2019) may be more appropriate than a complex metabolic model with a large number of 436 
untested assumptions. If species identity is not important to the research question, then models 437 
aggregating species by function or phylogeny are a good way to reduce complexity. However, the 438 
successful use of a therapeutic consortium may sensitively depend on the abundances of particular 439 
species being present, and thus in clinical applications, a species-level metabolic model may be 440 
necessary. 441 
 442 
It is an open question whether metabolic models can generate the complex dynamics that is 443 
occasionally observed experimentally, such as multi-stability (Khazaei et al., 2020), oscillations or 444 
chaos (Beck et al., 2018). The stable marriage model integrates metabolic information in an original 445 
manner by considering a matrix of metabolite preferences per microorganism and a matrix of 446 
microorganisms ranked by their consumption rate per metabolite. Given these rankings, the model 447 
������������������������ȋǲ���������ǳȌ���������������������������� (Goyal et al., 2018). This model 448 
was applied to seven Bacteroides species growing on nine polysaccharides. Interestingly, the 449 
authors found species sub-sets giving up to five different stable states and thus the stable marriage 450 
model can easily generate multi-stability. If a microbial community displays complex behavior, 451 
metabolic community models assuming steady state conditions are not suitable. However, dynamic 452 
FBA can reproduce such behavior. For instance, bistability occurred in simulations with a dynamic 453 
FBA model of a two-species system (Bacteroides thetaiotaomicron and Klebsiella pneumoniae) and 454 
was confirmed experimentally (Khazaei et al., 2020). It remains to be seen whether other complex 455 
dynamics, e.g. oscillations in gut microbiota linked to circadian rhythms (Rosselot et al., 2016), can 456 
be reproduced with metabolic models. 457 
 458 
Finally, even the most complex metabolite-explicit models discussed here omit a number of 459 
biological components known to be relevant in vivo, such as the immune system, which interacts 460 
with gut microorganisms e.g. through antimicrobial peptides and antibodies (Zheng et al., 2020), or 461 
the role of gut bacteriophages (Sausset et al., 2020). Extending models to take these factors into 462 
account is a further challenge. 463 
 464 
In conclusion, several metabolite-explicit models have been developed that account for a number of 465 
phenomena shaping human gut microbiota, which led to interesting biological hypotheses and 466 
findings. However, these models still face challenges concerning construction, parameterization 467 
and validation that represent exciting topics for future research.  468 
 469 
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Supplementary Figure 1: Metabolic networks of the toy species. (A) A carbohydrate fermenter (for 470 
example, a primary fermenter such as Bacteroides species that feed on sugars (here only glucose 471 
represented) and can secrete succinate, lactate, acetate, and formate; (B) A butyrate producer that 472 
can use sugars, lactate, and acetate and secretes butyrate, CO2, and H2. (C) An acetogen that due to 473 
the presence of the Wood Ljungdahl pathway (WL) can either grow in a combination of 474 
CO2/formate and H2 as a lithotroph or feed on sugars. In both cases it secretes acetate.  475 
 476 
Supplementary Figure 2: Stochastic course-grained model. Reactions from linear pathways of the 477 
toy model (Box 1) were merged into representative coarse-grained reactions (Supplementary Table 478 
3). Each reaction has a probability of occurring in time, which is derived from the product of 479 
reaction rates and the number of distinct reaction substrate combinations. The stochastic 480 
trajectories displayed in the insets are the average of ten independent simulations. The temporal 481 
dynamics of the system exhibit properties that depend on metabolism alone and are not deducible 482 
from the metabolic network. For instance, lactate is first produced then consumed, while formate is 483 
continuously produced and consumed in small amounts due the limiting amount of H2. Starting 484 
from 10 units of sugar, the system accumulates succinate, formate, acetate, CO2, and butyrate. Also, 485 
the metabolite trajectories in the carbohydrate fermenter vary little between independent 486 
simulations (are deterministic), while they exhibit noisy trajectories in the other species. 487 
Biologically, this could mean that the carbohydrate fermenter can harvest energy from glucose with 488 
minimal need for regulation, but once glucose is depleted, no further metabolic activity takes place. 489 
This observation is also consistent with the results of flux sampling (Box 1, Fig. F). Such coarse-490 
grained systems have limited scope as they depend on the previous knowledge of reaction rates but 491 
for a small system, where one may manually or systematically try different rates, they may guide 492 
the parametrization of the kinetic and dFBA models.  493 
 494 
Supplementary Table 1. Parameters of the kinetic model presented in Box 1 and their units. 495 
 496 
Supplementary Table 2. Metabolic reactions of the toy model species. 497 
 498 
Supplementary Table 3. Reactions of the coarse-grained stochastic kinetic model and arbitrary 499 
rates used in the simulations of Supplementary Figure 2. 500 
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Variables Description Initial value
C Biomass of Carbohydrate fermenter (C) 0.1
B Biomass of Butyrate producer (B) 0.1
A Biomass of Acetogen (A) 0.1
Glu Concentration of glucose 0
Ac Concentration of acetate 0
For Concentration of formate 0
C02 Concentration of C02 0
Parameter Description Value
ĳ Flow rate 0.1
Glu in Concentration of supplied glucose 8
ȝ max1 Growth rate of Carbohydrate fermenter (C) 1.1
ȝ max2 Growth rate of Butyrate producer (B) 0.6
ȝ max3 Growth rate of Acetogen (A) 1
K 11 =K 21 =K 22 =K 31 =K 33 =K 34 Monod constants 1
Y 11 =Y 21 =Y 31 =Y 22  =Y 33  =Y 34 Yields 1
w 22  =w 33 =w 34 Weights 1
Į 12 Į 32 Į 13 Į 24 Metabolite production rates 1
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Tentative units
mmol gDW
mmol gDW
mmol gDW

mmol
mmol
mmol
mmol

Tentative units
h-1

mmol/L
mmol gDW/h
mmol gDW/h
mmol gDW/h

mmol/L
mmol gDW (biomass) / mmol (metabolite)

-
mmol (metabolite) / mmol gDW (biomass)



model reaction_id
sugar_fermenter rxn05573
sugar_fermenter rxn00216
sugar_fermenter rxn00558
sugar_fermenter rxn00545
sugar_fermenter rxn00786
sugar_fermenter rxn00747
sugar_fermenter rxn00781
sugar_fermenter rxn01100
sugar_fermenter rxn01106
sugar_fermenter rxn00459
sugar_fermenter rxn00148
sugar_fermenter rxn00247
sugar_fermenter rxn00248
sugar_fermenter rxn00799
sugar_fermenter rxn00284
sugar_fermenter rxn00157
sugar_fermenter rxn13974
sugar_fermenter rxn00173
sugar_fermenter rxn00225
sugar_fermenter rxn00499
sugar_fermenter EX_cpd00027_e
sugar_fermenter EX_cpd00159_e
sugar_fermenter EX_cpd00047_e
sugar_fermenter EX_cpd00029_e
sugar_fermenter EX_cpd00036_e
sugar_fermenter EX_cpd00067_e
sugar_fermenter RNF
sugar_fermenter biomass
sugar_fermenter piSink
sugar_fermenter h2oSink
butyrate_producer rxn05147
butyrate_producer rxn00216
butyrate_producer rxn00558
butyrate_producer rxn00545
butyrate_producer rxn00786
butyrate_producer rxn00747
butyrate_producer rxn00781
butyrate_producer rxn01100
butyrate_producer rxn01106
butyrate_producer rxn00459
butyrate_producer rxn00148
butyrate_producer rxn00499
butyrate_producer rxn05938
butyrate_producer rxn00173
butyrate_producer rxn00225
butyrate_producer rxn00178
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butyrate_producer rxn27735
butyrate_producer rxn02167
butyrate_producer rxn00875
butyrate_producer rxn08173
butyrate_producer rxn45849
butyrate_producer EX_cpd00027_e
butyrate_producer EX_cpd00159_e
butyrate_producer EX_cpd00029_e
butyrate_producer EX_cpd00011_e
butyrate_producer EX_cpd11640_e
butyrate_producer EX_cpd00211_e
butyrate_producer EX_cp00067_e
butyrate_producer RNF
butyrate_producer BTCOADH
butyrate_producer biomass
butyrate_producer piSink
butyrate_producer h2oSink
acetogen rxn05147
acetogen rxn00216
acetogen rxn00558
acetogen rxn00545
acetogen rxn00786
acetogen rxn00747
acetogen rxn00781
acetogen rxn01100
acetogen rxn01106
acetogen rxn00459
acetogen rxn00148
acetogen rxn05938
acetogen rxn00173
acetogen rxn00225
acetogen rxn00499
acetogen rxn00690
acetogen rxn01211
acetogen rxn00906
acetogen rxn04954
acetogen rxn06149
acetogen rxn39948
acetogen rxn45849
acetogen rxn08173
acetogen EX_cpd00027_e
acetogen EX_cpd00159_e
acetogen EX_cpd00029_e
acetogen EX_cpd00011_e
acetogen EX_cpd11640_e
acetogen EX_cpd00047_e
acetogen EX_cp00067_e



acetogen RNF
acetogen FDH
acetogen h2T
acetogen co2T
acetogen forT
acetogen biomass
acetogen piSink
acetogen h2oSink



reaction_name
D-glucose transport in via proton symport
ATP:D-glucose 6-phosphotransferase
D-glucose-6-phosphate aldose-ketose-isomerase
ATP:D-fructose-6-phosphate 1-phosphotransferase
D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase (glycerone-phosphate-forming)
D-glyceraldehyde-3-phosphate aldose-ketose-isomerase
D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)
ATP:3-phospho-D-glycerate 1-phosphotransferase
2-Phospho-D-glycerate 2,3-phosphomutase
2-phospho-D-glycerate hydro-lyase (phosphoenolpyruvate-forming)
ATP:pyruvate 2-O-phosphotransferase
ATP:oxaloacetate carboxy-lyase (transphosphorylating;phosphoenolpyruvate-forming)
(S)-malate:NAD+ oxidoreductase
(S)-malate hydro-lyase (fumarate-forming)
succinate:NAD+ oxidoreductase
Acetyl-CoA:formate C-acetyltransferase
pyruvate:ferredoxin 2-oxidoreductase (CoA-acetylating)
acetyl-CoA:phosphate acetyltransferase
ATP:acetate phosphotransferase
(S)-Lactate:NAD+ oxidoreductase

RNF
Mock biomass function

D-Glucose-ABC transport
ATP:D-glucose 6-phosphotransferase
D-glucose-6-phosphate aldose-ketose-isomerase
ATP:D-fructose-6-phosphate 1-phosphotransferase
D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase (glycerone-phosphate-forming)
D-glyceraldehyde-3-phosphate aldose-ketose-isomerase
D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)
ATP:3-phospho-D-glycerate 1-phosphotransferase
2-Phospho-D-glycerate 2,3-phosphomutase
2-phospho-D-glycerate hydro-lyase (phosphoenolpyruvate-forming)
ATP:pyruvate 2-O-phosphotransferase
(S)-Lactate:NAD+ oxidoreductase
pyruvate ferredoxin oxidoreductase
acetyl-CoA:phosphate acetyltransferase
ATP:acetate phosphotransferase
Acetyl-CoA:acetyl-CoA C-acetyltransferase



BHBDCLOS-RXN
(S)-3-Hydroxybutanoyl-CoA hydro-lyase
Butanoyl-CoA:acetate CoA-transferase
F(1)-ATPase

RNF
Butanoyl-CoA:acetate CoA-transferase
Mock biomass function

D-Glucose-ABC transport
ATP:D-glucose 6-phosphotransferase
D-glucose-6-phosphate aldose-ketose-isomerase
ATP:D-fructose-6-phosphate 1-phosphotransferase
D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase (glycerone-phosphate-forming)
D-glyceraldehyde-3-phosphate aldose-ketose-isomerase
D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)
ATP:3-phospho-D-glycerate 1-phosphotransferase
2-Phospho-D-glycerate 2,3-phosphomutase
2-phospho-D-glycerate hydro-lyase (phosphoenolpyruvate-forming)
ATP:pyruvate 2-O-phosphotransferase
pyruvate ferredoxin oxidoreductase
acetyl-CoA:phosphate acetyltransferase
ATP:acetate phosphotransferase
(S)-Lactate:NAD+ oxidoreductase
Formate:tetrahydrofolate ligase (ADP-forming)
5,10-Methenyltetrahydrofolate 5-hydrolase (decyclizing)
5,10-methylenetetrahydrofolate:NAD+ oxidoreductase
5-methyltetrahydrofolate:NAD+ oxidoreductase
5-Methyltetrahydrofolate:Corrinoid Co-methyltransferase

F(1)-ATPase



RNF

H2 passive transport
co2 passive transport
formate passive transport
Mock biomass function



equation
D-Glucose + H+ <=> D-Glucose + H+
ATP + D-Glucose <=> ADP + H+ + D-glucose-6-phosphate
D-glucose-6-phosphate <=> D-fructose-6-phosphate
ATP + D-fructose-6-phosphate <=> ADP + H+ + D-fructose-1,6-bisphosphate
D-fructose-1,6-bisphosphate <=> Glycerone-phosphate + Glyceraldehyde3-phosphate
Glyceraldehyde3-phosphate <=> Glycerone-phosphate
NAD + Phosphate + Glyceraldehyde3-phosphate <=> NADH + H+ + 1,3-Bisphospho-D-glycerate
ATP + 3-Phosphoglycerate <=> ADP + 1,3-Bisphospho-D-glycerate
2-Phospho-D-glycerate <=> 3-Phosphoglycerate
2-Phospho-D-glycerate <=> H2O + Phosphoenolpyruvate
ATP + Pyruvate <=> ADP + Phosphoenolpyruvate + H+
ATP + Oxaloacetate <=> ADP + CO2 + Phosphoenolpyruvate
NAD + L-Malate <=> NADH + Oxaloacetate + H+
L-Malate <=> H2O + Fumarate
NAD + Succinate <-- NADH + H+ + Fumarate
Acetyl-CoA + Formate <-- CoA + Pyruvate
CO2 + Acetyl-CoA + H+ + 2.0 Reducedferredoxin <=> CoA + Pyruvate + 2.0 Oxidizedferredoxin
Phosphate + Acetyl-CoA <=> CoA + Acetylphosphate
ATP + Acetate <-- ADP + Acetylphosphate
NAD + L-Lactate <-- NADH + Pyruvate + H+
D-Glucose <=> 
L-Lactate <=> 
Formate <=> 
Acetate <=> 
Succinate --> 
H+ <=> 
NAD + 3.0 H+ + 2.0 Reducedferredoxin <=> NADH + 2.0 H+ + 2.0 Oxidizedferredoxin
3.0 ATP + 2.0 NADH + 2.0 Acetyl-CoA + 2.0 H+ --> 2.0 NAD + 3.0 ADP + 2.0 CoA
Phosphate <=> 
H2O <=> 
H2O + ATP + D-Glucose --> ADP + Phosphate + D-Glucose + H+
ATP + D-Glucose <=> ADP + H+ + D-glucose-6-phosphate
D-glucose-6-phosphate <=> D-fructose-6-phosphate
ATP + D-fructose-6-phosphate <=> ADP + H+ + D-fructose-1,6-bisphosphate
D-fructose-1,6-bisphosphate <=> Glycerone-phosphate + Glyceraldehyde3-phosphate
Glyceraldehyde3-phosphate <=> Glycerone-phosphate
NAD + Phosphate + Glyceraldehyde3-phosphate <=> NADH + H+ + 1,3-Bisphospho-D-glycerate
ATP + 3-Phosphoglycerate <=> ADP + 1,3-Bisphospho-D-glycerate
2-Phospho-D-glycerate <=> 3-Phosphoglycerate
2-Phospho-D-glycerate <=> H2O + Phosphoenolpyruvate
ATP + Pyruvate <=> ADP + Phosphoenolpyruvate + H+
NAD + L-Lactate <=> NADH + Pyruvate + H+
CO2 + Acetyl-CoA + H+ + Reducedferredoxin <-- CoA + Pyruvate + Oxidizedferredoxin
Phosphate + Acetyl-CoA <=> CoA + Acetylphosphate
ATP + Acetate <-- ADP + Acetylphosphate
2.0 Acetyl-CoA <=> CoA + Acetoacetyl-CoA



NADH + H+ + Acetoacetyl-CoA <=> NAD + (S)-3-Hydroxybutyryl-CoA
(S)-3-Hydroxybutyryl-CoA --> H2O + Crotonyl-CoA
Acetate + Butyryl-CoA --> Acetyl-CoA + Butyrate
ADP + Phosphate + 4.0 H+ <=> H2O + ATP + 3.0 H+
2.0 Oxidizedferredoxin + H2 <=> 2.0 H+ + 2.0 Reducedferredoxin
D-Glucose <=> 
L-Lactate <=> 
Acetate <=> 
CO2 <=> 
H2 <=> 
Butyrate --> 
H+ <=> 
NAD + 3.0 H+ + 2.0 Reducedferredoxin <=> NADH + 2.0 H+ + 2.0 Oxidizedferredoxin
2.0 NADH + 2.0 H+ + Crotonyl-CoA + Oxidizedferredoxin --> 2.0 NAD + Butyryl-CoA + Reducedferredoxin
3.0 ATP + 2.0 NADH + 2.0 Acetyl-CoA + 2.0 H+ --> 2.0 NAD + 3.0 ADP + 2.0 CoA
Phosphate <=> 
H2O <=> 
H2O + ATP + D-Glucose --> ADP + Phosphate + D-Glucose + H+
ATP + D-Glucose <=> ADP + H+ + D-glucose-6-phosphate
D-glucose-6-phosphate <=> D-fructose-6-phosphate
ATP + D-fructose-6-phosphate <=> ADP + H+ + D-fructose-1,6-bisphosphate
D-fructose-1,6-bisphosphate <=> Glycerone-phosphate + Glyceraldehyde3-phosphate
Glyceraldehyde3-phosphate <=> Glycerone-phosphate
NAD + Phosphate + Glyceraldehyde3-phosphate <=> NADH + H+ + 1,3-Bisphospho-D-glycerate
ATP + 3-Phosphoglycerate <=> ADP + 1,3-Bisphospho-D-glycerate
2-Phospho-D-glycerate <=> 3-Phosphoglycerate
2-Phospho-D-glycerate <=> H2O + Phosphoenolpyruvate
ATP + Pyruvate <=> ADP + Phosphoenolpyruvate + H+
CO2 + Acetyl-CoA + H+ + Reducedferredoxin <-- CoA + Pyruvate + Oxidizedferredoxin
Phosphate + Acetyl-CoA <=> CoA + Acetylphosphate
ATP + Acetate <-- ADP + Acetylphosphate
NAD + L-Lactate <-- NADH + Pyruvate + H+
ATP + Formate + Tetrahydrofolate <=> ADP + Phosphate + 10-Formyltetrahydrofolate
H2O + 5-10-Methenyltetrahydrofolate <=> H+ + 10-Formyltetrahydrofolate
NAD + 5-10-Methylenetetrahydrofolate <=> NADH + 5-10-Methenyltetrahydrofolate
NAD + 5-Methyltetrahydrofolate <=> NADH + H+ + 5-10-Methylenetetrahydrofolate
H+ + 5-Methyltetrahydrofolate + Corrinoid --> Tetrahydrofolate + Methylcorrinoid
CoA + CO2 + H+ + Reducedferredoxin + Methylcorrinoid --> H2O + Acetyl-CoA + Oxidizedferredoxin + Corrinoid
2.0 Oxidizedferredoxin + H2 --> 2.0 H+ + 2.0 Reducedferredoxin
ADP + Phosphate + 4.0 H+ <=> H2O + ATP + 3.0 H+
D-Glucose <=> 
L-Lactate <=> 
Acetate <=> 
CO2 <=> 
H2 <=> 
Formate <=> 
H+ <=> 



NAD + 3.0 H+ + 2.0 Reducedferredoxin <=> NADH + 2.0 H+ + 2.0 Oxidizedferredoxin
NAD + 2.0 Formate + 2.0 Oxidizedferredoxin <=> NADH + 2.0 CO2 + H+ + 2.0 Reducedferredoxin
H2 <=> H2
CO2 <=> CO2
Formate <=> Formate
3.0 ATP + 2.0 NADH + 2.0 Acetyl-CoA + 2.0 H+ --> 2.0 NAD + 3.0 ADP + 2.0 CoA
Phosphate <=> 
H2O <=> 



ID Reactants
glycolysis_cf glucose_out:1
pyruvateS_cf pep_cf:1, proton_cf:1
formateP_cf pyruvate_cf:1
succinateP_cf pep_cf:1, nadh_cf:2, proton_cf:2
lactateP_cf pyruvate_cf:1, proton_cf:1, nadh_cf:1
acetateP_cf pyruvate_cf:1
rnf_cf proton_cf:3, ferredoxinrd_cf:2
biomass_cf accoa_cf:2, atp_cf:3, nadh_cf:2, proton_cf:2
glycolysis_bp glucose_out:1
lactateP_bp pyruvate_bp:1, proton_bp:1, nadh_bp:1
co2P_bp pyruvate_bp:1
acetateP_bp accoa_bp:1
butyrateP_bp accoa_bp:1, acetate_out:1, nadh_bp:3, proton_bp:3
rnf_bp proton_bp:3, ferredoxinrd_bp:2
atpase_bp proton_out:4
hydrogenase_bp proton_bp:2, ferredoxinrd_bp:2
biomass_bp accoa_bp:2, atp_bp:4, nadh_bp:2, proton_bp:2
formateD_ac co2_out:2, ferredoxinrd_ac:2, proton_ac:2, nadh_ac:1
WL_ac formate_ac:1, atp_ac:1, proton_ac:4, nadh_ac:2, co2_out:1, ferredoxinrd_ac:1
glycolysis_ac glucose_out:1
lactateP_ac pyruvate_ac:1, proton_ac:1, nadh_ac:1
co2P_ac pyruvate_ac:1
acetateP_ac accoa_ac:1
rnf_ac proton_ac:3, ferredoxinrd_ac:2
atpase_ac proton_out:4
hydrogenase_ac proton_ac:2, ferredoxinrd_ac:2
forT formate_ac:1
biomass_ac accoa_ac:2, atp_ac:4, nadh_ac:2, proton_ac:2

6XSSOHPHQWDU\�7DEOH��



Products Forward_Rate Reversed_Rate
pep_cf:2, nadh_cf:2, proton_cf:4 1 0
pyruvate_cf:1, atp_cf:1 1 0
formate_out:1, accoa_cf:1 0.5 0
succinate_out:1, atp_cf: 1 0.001 0
lactate_out:1 0.01 0
acetate_out:1, ferredoxinrd_cf:2, proton_cf:1, atp_cf:1 0.055 0
nadh_cf:1, proton_out:3 0.1 0
biomass_cf:1 1 0
pyruvate_bp:2, nadh_bp:2, proton_bp:2, atp_bp:2 1 0
lactate_out:1 0.2 0.1
accoa_bp:1, ferredoxinrd_bp:1, proton_bp:1, co2_out:1 0.5 0
atp_bp:1, acetate_out:1 0.6 0.1
butyrate_out:1, ferredoxinrd_bp:1 0.7 0
nadh_bp:1, proton_out:3 0.2 0
atp_bp:1, proton_bp:3 0.5 0.1
h2_out:1 1 0.1
biomass_bp:1 1 0
formate_ac:2 0.7 0
accoa_ac:1 1 0
pyruvate_ac:2, nadh_ac:2, proton_ac:2, atp_ac:2 0.1 0
lactate_out:1 0.01 0
accoa_ac:1, ferredoxinrd_ac:1, proton_ac:1, co2_out:1 1 0
atp_ac:1, acetate_out:1 0.6 0.1
nadh_ac:1, proton_out:3 1 0
atp_ac:1, proton_ac:3 0.5 0.1
h2_out:1 0.1 1
formate_out:1 0.1 0.1
biomass_ac:1 1 0


