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Abstract: Natural Products (NP) are essential for the discovery of novel drugs and products for
numerous biotechnological applications. The NP discovery process is expensive and time-consuming,
having as major hurdles dereplication (early identification of known compounds) and structure eluci-
dation, particularly the determination of the absolute configuration of metabolites with stereogenic
centers. This review comprehensively focuses on recent technological and instrumental advances,
highlighting the development of methods that alleviate these obstacles, paving the way for accelerat-
ing NP discovery towards biotechnological applications. Herein, we emphasize the most innovative
high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis,
dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches,
databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.

Keywords: blue biotechnology; natural products; high-throughput screening (HTS); mode of action
(MoA); molecular networking; dereplication; natural products databases; Global Natural Product Social
Molecular Networking (GNPS); informatic chemometrics; high-throughput genome sequencing (HTGS);
computer assisted structure elucidation (CASE); relative and absolute configuration determination in
structure elucidation

Mar. Drugs 2023, 21, 308. https://doi.org/10.3390/md21050308 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md21050308
https://doi.org/10.3390/md21050308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0002-5510-1170
https://orcid.org/0000-0001-7423-6284
https://orcid.org/0000-0002-9112-6877
https://orcid.org/0000-0002-8886-7519
https://orcid.org/0000-0002-0081-8801
https://orcid.org/0000-0003-2628-303X
https://orcid.org/0000-0002-7469-4290
https://orcid.org/0000-0003-4392-4644
https://orcid.org/0000-0003-1607-5106
https://orcid.org/0000-0002-7841-6271
https://doi.org/10.3390/md21050308
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md21050308?type=check_update&version=1


Mar. Drugs 2023, 21, 308 2 of 66

1. Introduction

Natural bioresources are well known for producing secondary metabolites with unique
features, highly complex structures, and biochemical properties valuable for human health-
care and well-being, which have inspired industries for numerous biotechnological ap-
plications [1,2]. The urge to fill the industrial pipelines and to identify novel lead-like
compounds for drug discovery that can meet the challenge of lacking suitable therapeutic
agents for a wide range of diseases is very high [3]. This comprehensive review covers
the high-throughput (HT) workflow for natural product (NP) discovery, from bioassay
screening, docking, and mode of action (MoA) prediction to HT analytical equipment,
metabolomics, genomics, NP databases, in silico computational approaches that support
NP dereplication (early identification of known compounds), metabolite profiling, quanti-
tative structure activity relationship (QSAR), and computer assisted structure elucidation
(CASE), as well as methods for the determination of secondary metabolites relative and
absolute configuration to elucidate their 3D chemical structure, with particular focus on
methodological prospects and advances (Figure 1).
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Figure 1. Natural product discovery workflow. (a) NP and RRI sampling, taxonomic characterization,
biobank repositories; (b) HT bioactivity screening, genomic sequencing, dereplication, in silico
preclinal trials; (c) NP isolation and purification (out of the scope of this review); (d) structure
elucidation, methods for attaining the NP 3D chemical structure, in silico preclinical trials; and e NP
elucidated with its absolute configuration.

Two major bottlenecks that hinder NP discovery are dereplication and structure
elucidation, particularly the determination of the relative and absolute configuration of
secondary metabolites with stereogenic centers. Herein, particular focus will be given
to these subjects. Dereplication has become a hot topic in the past decade, with nearly
1240 publications (Web of Science) and 908 articles published after April 2014 that have
received over 40,520 citations in total. In the pursuit of Marine Natural Products (MNP),
Blue Biotechnology (BB), which is the application of science and technology to living aquatic
organisms to produce knowledge, goods, and services (OECD, 2016), brings together
multiactors and multidisciplinary fields, blending them in new ways such as combining
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organic and analytical chemistry with molecular biology, genomics, and/or informatic
chemometrics, thus providing key conceptual or methodological advances that are likely
to open innovative research possibilities. Some of the NP methods are so intricately
connected that it is very difficult to separate them into sections without overlapping. Our
insights into this theme will give priority to studies that reported significant advances in
the field, highlighting the major advances that have shaped the ground, including method
comparisons, our perspective on developments, future trends, and the carving of new
directions. This review is meant to be complementary to our highly cited 2015 Natural
Products Report (NPR) paper, entitled “Dereplication: racing to speed up the natural products
discovery process” [4].

Since April 2014, eighty-nine reviews have been published out of the 908 published
papers on NP dereplication, while 387 papers were reported in the ambit of NP struc-
ture elucidation, with 40 of these considering the determination of molecular relative and
absolute configuration. These include highly cited and recent reviews covering: (1) inte-
gration of taxonomic and/or bioactivity data [5]; (2) the analysis of the chromatographic
(LC-MS, GC-MS, and LC-NMR) and spectroscopic data (NMR and DIMS) for metabolite
profiling [6]; (3) a comprehensive overview of NP databases, with emphasis on free open
access databases [7–13]; (4) molecular networking strategies for NP dereplication and
distinct dereplication workflows [14–18]; (5) dereplication using metabolomics, genomics,
and metagenomics [19–24]; and (6) in silico methods (artificial intelligence and machine
learning) for dereplication and structure elucidation [25,26]. With regard to computa-
tional/bioinformatics tools, the reviews of Medema et al. [27] and Ren et al. [28], both
published in 2020, are suggested, while the paper by Prihoda et al. [29] is recommended for
machine learning (ML) methods in NP discovery.

Unambiguous stereochemical assignments of NP remain a challenge. In this context,
we highlight reviews on: (1) reassignment of absolute configuration [30,31]; (2) NMR
calculation with quantum chemical approaches, such as DP4 [32–37], including optical
rotation, and electronic and vibrational circular dichroism aided by quantum chemical
calculations [35,38]. There are several reviews that address the developments in computer-
assisted structure elucidation (CASE) systems [4,39–42]. Among them, we highlight that
3D structure analysis in conjunction with CASE can be performed not only by including
2D NOESY/ROESY experimental data [39–41], but also by using DFT chemical shift
analysis [35,40,43–45]; and (3) structure elucidation aided by genomics [46–51]. Many
reviews that systematically list the most used tools of synthetic biology methodologies have
been published from mid-2014 to date. For reviews on microbial genome mining, these
particularly focus on genome mining strategies and tools for ribosomally synthesized and
post-translationally modified peptides (RiPPs) [48,52,53]. The work of Robinson et al. [54]
is suggested as an excellent review with a roadmap on metagenomic enzyme identification.

The authors of this review are members of the COST Action CA18238—European
Transdisciplinary Networking Platform for Marine Biotechnology (https://www.ocean4
biotech.eu/ (accessed on 23 March 2023)) [55,56]. Thus, although the techniques described
in this review can be used both for NP of terrestrial and marine origin, we chose, whenever
possible, to give examples of MNP.

Discovering unique MNP presents added challenges such as accessing organisms in
extreme or deep environments, reviving uncultivable microorganisms under lab condi-
tions, dereplication, solving sustainable supply issues, discovering their bioactivity and
mode of action (MoA), and optimizing their pharmacological properties [51,57]. However,
efforts made in these directions have been rewarded, as MNP are a promising source of
medicines, with 17 marine-derived drugs successfully approved and several other mar-
ketable marine-derived products. The development of innovative discovery approaches
in the fields of screening methods, metabolomics, genomics, metagenomics, proteomics,
combinatorial biosynthesis, synthetic biology, expression systems, and bioinformatics,
combined with dereplication, will continue to unravel MNP with unique structural and
biological properties and MoA for numerous biotechnological purposes [58,59].

https://www.ocean4biotech.eu/
https://www.ocean4biotech.eu/
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It is our goal to give insight to the BB community on the most advanced HT methods
for MNP discovery and knowledge on structure elucidation. We believe that this review
may be used as a guideline for the whole NP discovery process in academic laboratories.

2. Advances, Trends, and Challenges in High-Throughput Screening (HTS)

The following section summarizes a set of selected methods and studies that have
attracted great attention from the research community since April 2014 (based on annual
citation rate and/or total number of citations). Consideration has been given to HTS studies
referring to MNP and approved drugs.

2.1. Lab-Based HTS

A recent review restates the decreasing enthusiasm of major pharmaceutical compa-
nies for implementing HTS programs, particularly on NP [49]. It was reported that besides
legitimate concerns (e.g., regulations on international access to natural bioresources), bio-
logical extracts are typically too complex to be compatible with HTS for specific molecular
targets, and the costly efforts to reduce chemical complexity make the whole procedure less
attractive. The limited success of large HTS campaigns previously performed by companies
was deemed to be another reason for the decreasing interest in the pharmaceutical industry,
though the interest in HTS and NP for drug discovery remains a hot research topic in
academia.

Navarro et al., 2014 designed an image-based 384-well HTS method for the discov-
ery of biofilm inhibitors and inducers of biofilm detachment against the biofilm-forming
pathogen Pseudomonas aeruginosa [60]. This method uses non-z-stack epifluorescence mi-
croscopy to image a constitutively expressing green fluorescent protein (GFP)-tagged
strain of P. aeruginosa, and the quantification was performed using an automated image
analysis script. Bacterial cellular metabolic activity in combination with biofilm coverage
was measured using the redox-sensitive dye XTT to distinguish between antibiotics and
nonantibiotic biofilm inhibitors [60].

Caicedo et al., 2017 developed data-analysis strategies for image-based cell profiling, a
high-throughput method for the quantification of phenotypic differences among a variety
of cell populations, using image acquisition with high-throughput microscopy systems and
subsequent image processing and analysis. This method enables the design of experiments
for several biological objectives [61].

Laubscher and Rautenbach, 2022 developed an effective preliminary screening assay
to identify antibacterial-producing bacteria called the bioluminescent simultaneous antago-
nism (BSLA) assay, which measures the luminescence of bioluminescent reported bacteria
co-cultivated in 96-well plates with bacterial isolates under investigation to determine the
production of antibacterial compounds. The authors argued that this assay is amenable
to scaling up and can be incorporated into automated HTS systems, permitting rapid
pre-screening of unknown bacterial isolates, which, when coupled with dereplication and
identification technologies, can effectively fast-track antimicrobial discovery [62].

In 2022, Orlov et al. designed a workflow that included molecular component analysis
with High Resolution Mass Spectrometry (HR-MS), selective chemical tagging and deu-
terium labeling, liver tissue penetration analysis, in vitro evaluation of biological activity,
and computational chemistry tools used to produce putative structural drug-lead candi-
dates. A proteomic experiment was also carried out to evaluate the potential MoA of these
suggested structures by molecular docking [63].

Drug repurposing (i.e., the identification of existing medicines with established safety
for the treatment of new and rare diseases) is a smart strategy for increasing popularity in
HTS campaigns as it reduces the cost, effort, and time required for drug development. This
approach is particularly attractive in emergency situations such as COVID-19. Chen et al.
employed a SARS-CoV-2 cytopathic assay with an accompanying cytotoxicity counter-assay
to screen 8810 approved/investigational drugs, bioactive compounds, and NP at four dif-
ferent concentrations [64]. A total of 319 hits with antiviral activity were found, with almost
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half of these being approved/investigational drugs. Chlorprothixene, methotrimeprazine,
and piperacetazine were the three most potent FDA-approved drugs that were repurposed
for the fight against coronavirus.

2.2. Structure-Based Virtual HTS, MoA Prediction, New Trends, and Challenges

Bertrand et al., 2016 investigated the potential of statistical correlation analysis to
enable unambiguous identification of features related to bioactive compounds in crude
extracts without the need for compound isolation using UHPLC-ESI-TOFMS profiles,
micro-flow CapNMR spectra, an anticancer bioassay, and statistical correlation analysis,
enabling early-stage detection of the compounds bioactivity [65].

Bioactive Molecular Networking (MN) was designed in 2018 by Dorrestein and co-
workers as a bioinformatic pipeline to find candidate active molecules directly from bioac-
tive extracts, aiming to avoid the isolation of non-bioactive compounds from bioactive
extracts. This tool enables mapping bioactivity scores in MN and can speed up the process
of drug-lead discovery by revealing bioactive secondary metabolites in complex mixtures
without previous compound isolation [66]. MASST is an informatic tool incorporated in the
Global Natural Product Social Molecular Networking (GNPS), described in Section 4.2.1,
that may feasibly incorporate translation of in vitro or in vivo data from model organisms
to humans [67].

In a recent study, six marine-derived Streptomyces aculeolatus extracts were analyzed
by LC-MS/MS, and the data were scrutinized by MN in conjunction with supervised multi-
variate statistical analysis and partial least squares discriminant analysis (PLS-DA) to unveil
the correlation between the metabolite classes and antibiofilm activity. Napyradiomycin
SF2415B3 inhibition was confirmed for S. aureus biofilm formation [68]. Napyradiomycins
were later found to exhibit marine antibiofilm and antifouling activity [69].

Blanco et al., 2020 introduced a pipeline designated EasyDIVER (Easy pre-processing
and Dereplication of In Vitro Evolution Reads), which facilitates the computational analysis
of HTS data from in vitro evolution experiments and selection trials for the discovery
of functional RNA nucleic acids and peptides. This pipeline supports the input of raw,
paired-end, demultiplexed raw files, providing dereplicated unique nucleic acid and/or
peptide sequences and their count reads [70].

GraphAMR, a novel computational workflow available at https://github.com/ablab/
graphamr (accessed on 23 March 2023), enables the recovery and identification of antibi-
otic resistance genes from fragmented metagenomic assemblies [71]. The availability of
extensive (meta)genomic datasets has started complementing bioactivity-guided screening
of bacterial extracts and the characterization of biosynthetic pathways for drug discovery,
ushering researchers into the post-genomics, big-data era [50].

Understanding the MoA of complex mixtures early in the NP discovery pipeline
is important to define their practical applications. In 2015, Linington and co-workers
developed a new platform, entitled Compound Activity Mapping (CAM), which directly
predicts the identities and MoA of bioactive constituents of complex NP extract libraries.
This new tool identified novel bioactive compounds and predicted the compounds MoA
based on primary screening data. In essence, it converted the NP discovery workflow into a
targeted, hypothesis-driven discovery model where the chemical properties and biological
MoA of the bioactive metabolites are known early in the screening process and the lead NP
can be rationally selected based on biological and/or chemical novelty [72]. Recently, this
methodology evolved into an open online CAM platform, termed NP Analyst, available at
www.npanalyst.org (accessed on 23 March 2023), which integrates biological screening and
untargeted mass spectrometry (MS) library data for NP discovery, complementing current
discovery workflows. NP Analyst is compatible with almost any type of bioassay data,
MS data via the mzML format, as well as processed MS data from MZmine and GNPS
open-source platforms [73]. Another recent study performed by O’Rourke et al. established
a MoA classification method using global transcriptome profiling [74].

https://github.com/ablab/graphamr
https://github.com/ablab/graphamr
www.npanalyst.org
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In the same context, the cytotoxic activity was examined in the crude extract and
respective fractions derived from the Red Sea sponge Amphimedon sp. The chemical
constituents identified in the active fraction by LC-MS analysis were subjected to molecular
docking against the active site of SET oncoprotein and amphiceramides A-B, as well as
acetamido glucosyl ceramide, which were revealed to have the highest energy binding
affinities and interactions with the binding site of this protein. Additionally, ADME/Tox
calculations were performed for these MNP to predict their pharmacokinetic profile [75].

We further distinguished a few recent studies dealing with the challenges/limitations
or providing some new trends in HTS. Following the success in biomedical research,
zebrafish (living embryos of Danio rerio) is gaining a growing interest as a model for high-
content HTS (i.e., automated, image-based morphological profiling of biological activity in
cells or whole organisms) in drug discovery programs. Besides investigating the therapeutic
effect of a molecule, zebrafish embryos can facilitate other steps of the discovery process,
including target validation, toxicity evaluation, and drug optimization. In the study of
Gallardo et al. [76], a total of 2960 chemicals, including 800 NP, were screened in zebrafish
embryos, and 165 compounds inhibiting primordium migration without overt toxicity were
identified as potential antimetastatic agents. The ability of the inhibitor SU6656 to decrease
tumor metastasis was subsequently confirmed with in vivo experiments in a mouse tumor
model.

Regarding strategic actions promoting HTS-driven drug discovery, it is worth men-
tioning the initiative led by the US National Cancer Institute [77]. To stimulate HTS
efforts and accelerate NP drug discovery, the NCI Program for Natural Product Discovery
(NPNPD) was launched in 2018 to create a publicly accessible HTS-amenable library of
over 1,000,000 fractions from 125,000 marine, microbial, and plant extracts collected from
around the world. About 326,000 fractions were made available in 384-well plates, free of
charge and open to screening against any disease target by 2019 (https://dtp.cancer.gov
(accessed on 23 March 2023)).

There is no doubt that HTS continues to be a key strategy for identifying chemical
compounds capable of inhibiting or activating specific disease-related targets, while new
assays are constantly being developed to support drug discovery efforts. Though the
discussion about the common artifacts in HTS-derived hits has raged for the last 5 years, it
has also highlighted the importance of avoiding particularly high concentrations during
cell-based screening of NP against specific biological processes [78]. This debate was
particularly focused on molecules presenting a strong effect in a wide variety of assays,
which are commonly referred to as pan-assay interference compounds (i.e., PAINS) [79,80].
Demonstrating non-specific binding/interaction with proteinaceous targets, PAINS are
frequently identified as positive hits in HTS programs and incorrectly assumed to possess
drug-like properties. Such confusing situations are encountered in the screening of both
synthetic drugs and NP [79,81]. There is a growing consensus that hits with promiscuous
activity profiles (e.g., isothiazolones, toxoflavin-like, quinones, etc.) should be excluded
from further investigation when drug discovery projects are focused on the one-drug-
one-target paradigm using biochemical assays (molecular target-based) [80,82], but some
researchers advocate that this practice can be detrimental when implementing cell-based
phenotypic screening [82]. Despite the conflicting viewpoints on this issue, scientists
dealing with HTS should be more vigilant and cautious about PAINS-induced artifacts to
avoid wasting time and effort on worthless experiments.

3. Advances in HT Analytical Techniques for NP Dereplication

The high separation efficiency and the enhanced capability for hyphenation with a
wide variety of detection systems such as UV-VIS/DAD, ELSD, MS, HR-MS, HR-MS/MS,
and NMR make High Performance Liquid Chromatography (HPLC) or Ultra High Perfor-
mance Liquid Chromatography (UHPLC) (when using columns packed with sub−2 µm
that require higher pressure levels) the most common separation techniques used in the
early stages of NP dereplication studies [9,83].

https://dtp.cancer.gov
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Due to its extreme sensitivity, rapidity, and ability to identify even very complex
mixtures, liquid chromatography coupled with mass spectrometry (LC-MS) is nowadays
the most widely used method for untargeted metabolomics and dereplication of MNP.

Overall, the annotation rate of LC-MS-based untargeted metabolomics is around 2–5%.
Hence, most of the chemical signatures of a biological organism remain unannotated [84,85].
The need for more effective annotation of metabolites led to the development of instruments
with higher mass resolutiondereplication. An added benefit of LC-HR-MS systems is
their capability to analyze numerous samples in a short time, using minimal quantities
of biological extracts, and attaining an increasingly growing amount of analytical data.
Despite these advantages, HR-MS is unable to distinguish and identify co-eluting isomeric
and isobaric compounds [86], but increasing progress has been observed in this direction
with the recent advent of systems integrating ion mobility separation.

In detail, classical MS1-type full-scan metabolomics often gives limited information
regarding the novelty of the compounds (i.e., presence/absence in a database or databases),
and they do not provide insights about the existence of structural analogs or derivatives,
hence limiting the value of the collected data in terms of chemical annotation [87]. Another
major challenge faced by the MS1 approach is that many structurally unrelated compounds
share the same molecular formula and mass [88], and hence they cannot be distinguished
using mass spectrometric data alone [86]. In contrast, HR-MS/MS (MS2) spectra are
specific to chemical families, and nowadays this hyphenated technique has become the
most preferred method for MNP dereplication studies. This is because the chemical
structure of a compound determines how it will be fragmented by MS/MS in the gas phase;
thus, molecules that share the same core structure will exhibit very similar fragmentation
patterns [87].

The mass spectrometers equipped with collision cells that are capable of producing
MS2 ions from molecular ions using different fragmentation mechanisms [(e.g., Collision In-
duced Dissociation (CID), Higher Energy Collisional Dissociation (HCD), Electron-Transfer
Dissociation (ETD), Electron Activated Dissociation (EAD), etc.] and the hybrid systems
combining different types of mass analyzers (i.e., Q-TOF, LTQ-Orbitrap) have remarkably
increased the informative power of the MS detectors (especially for HR-MS/MS) [86,89,90].
Orbitrap equipment is among the most commonly used hyphenated analytical instruments
for dereplication purposes, as GNPS only accepts Data-Dependent Acquisition (DDA) data,
i.e., molecules fragmented with CID, HCD, or ETD, and only supports for analysis the file
formats .mzXML, .mzML, and .mgf (https://ccms-ucsd.github.io/GNPSDocumentation/
isgnpsright/ (accessed on 23 March 2023)).

NP isolation and purification are beyond the scope of this review. Nevertheless, chro-
matographic techniques are the most commonly used for this purpose, either using normal
or reverse-phase silica, depending on the NP polarity, alumina for NP that require neutral
pH conditions, or Sephadex for molecular weight-based isolation. It is also very common
to perform pre-fractionations by column chromatography, followed by semipreparative or
preparative HPLC chromatography.

4. Dereplication Advances, Databases, Informatic Tools, and Case Studies

The rapid identification of previously reported compounds, termed as structural
dereplication, is a crucial component in NP and MNP chemistry. The taxonomic characteri-
zation of the metabolite-producing organisms, the availability of molecular structure data
for known metabolites, and the accessibility to metabolite spectrometric and spectroscopic
signatures are considered the focal points of structural dereplication [91].

Enabling free, open access to databases will advance new technologies in NP discovery.
Increased progress on new computational methodologies for secondary metabolite iden-
tification and elucidation will be achieved by enhancing and improving comprehensive
databases of known compounds to compare against experimental data [92]. In addition,
further advances in the creation of hybrid platforms that combine the advantages of hy-
phenated chromatographic techniques (LC-MS, GC-MS, and LC-NMR), especially those

https://ccms-ucsd.github.io/GNPSDocumentation/isgnpsright/
https://ccms-ucsd.github.io/GNPSDocumentation/isgnpsright/
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involving HR-MS/MS detection, computational MS, and MS/MS prediction methods, are
needed to enhance the power of metabolomics and enable more efficient, accurate anno-
tation and dereplication in NP research. Additionally, the synergy created by combining
these techniques enables nearly unlimited access to the NP chemical space [93].

4.1. LC-MS/MS Data Visualization and Annotation Methods

Comparing untargeted metabolomics data produced by several laboratories is difficult,
but the application of Principal Component Analysis (PCA) in data sets with low feature
overlap can yield the same qualitative description of a sample set [94]. Simplified PCA
models using Planes of Principal Component Analysis in R (Pearson coefficient, R) (PoP-
CAR) identify m/z or molecules that are exclusive to each strain within a group, supporting
automated mass matching to databases such as Antibase [95].

Molecular networking (MN) and substructure-based MN (MS2LDA), which identify
shared structural motifs [96], were developed as molecular mining tools for the discovery of
molecular families and substructures in MS/MS data. This approach enables the perception
of small molecular changes within samples, advancing research as a result of the refined
organization of MS/MS data [85,97].

MN was originally introduced in 2012 [97]. It connects molecules based on their
fragment ion mass spectra (MS/MS) and uses a vector-based computational algorithm to
mine/compare the spectral similarity of MS/MS spectra in large datasets. The output is
visualized by software as networks of MS/MS spectra, i.e., molecular networks, where
the nodes represent each molecule and the thickness of the edges connecting the nodes
indicates the structural similarity of NP sharing the same biochemical origin [87]. MN
per se does not allow searching for NP, but it found enormous use after the publication of
Wang et al. in 2016 [98], being empowered by the GNPS (http://gnps.ucsd.edu (accessed
on 23 March 2023)) (Section 4.2.1), a public web-based platform that compiles large volumes
of crowdsourced metabolomics datasets [98].

Due to their versatile nature, MN-based approaches combined with GNPS have
become an efficient and popular dereplication strategy, representing a breakthrough in the
exploration of MS/MS-based untargeted metabolomics of small molecules.

As a downside, MN may leave adduct species from the same molecular family sep-
arated and unconnected. To overcome this issue, Schmid et al., 2021 fused MS- and
MS/MS-based networks and integrated them into the GNPS environment, naming this new
approach Ion Identity Molecular Networking (IIMN). This approach improved network
connectivity for structurally related molecules by integrating chromatographic peak shape
correlation analysis into molecular networks to connect and collapse different ion species
of the same molecule [99].

In contrast with manual examination of MS/MS spectra connected in the spectral
networks, which is only possible when a reference library spectrum is available, in silico
predictions emerged as alternative methods to annotate an unknown fragmentation mass
spectrum. Nevertheless, the uncertainty around the correct structure among the predicted
candidate lists is a disadvantage. The Network Annotation Propagation (NAP) tool avail-
able in the GNPS platform, https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jp
(accessed on 23 March 2023), was developed to improve the accuracy of in silico predictions
by generating a network consensus of re-ranked structural candidates using the MN topol-
ogy and structural similarity and propagating structural annotations even when there is
no match to a MS/MS spectrum in spectral libraries [100]. However, LC-MS/MS methods
coupled with GNPS have often been overinterpreted, showing results that include absolute
configurations.

The major drawback of MN is the low coverage and accuracy of compound annotation
due to the limited size of the available databases, as well as the problems in the differ-
entiation of similar chemical scaffolds. Liu et al. 2020 reported an improved MN-based
approach, termed Diagnostic Fragmentation-Assisted Molecular Networking coupled with
in silico dereplication (DFMN-ISD), to overcome the mentioned obstacles. By adopting

http://gnps.ucsd.edu
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rule-based fragmentation patterns, insights into similar chemical scaffolds were provided,
while the generation of in silico candidates based on metabolic reactions expanded the
coverage of available NP databases, and the in silico annotation method further facilitated
the dereplication of candidates by computing their fragmentation trees [101].

Feature-Based Molecular Networking (FBMN) is an analysis method in the GNPS
infrastructure that recognizes isomers, incorporates relative quantification, and integrates
ion mobility data [102]. By evaluating the effect of data acquisition parameters on the
network topology resulting from the Classical Molecular Networking workflow (CLMN)
and the new FBMN, it was shown that sample concentration, run duration, collision energy,
and the number of precursors per cycle had the greatest influence. While all four parameters
were important to optimize for FBMN, the optimization of sample concentration and LC
duration was only of high importance for CLMN [103]. Additional methods have been
developed for MS/MS-based MN, including the ones mentioned above: Ion Identity MN
(IIMN), Building Blocks-Based Molecular Networking (BBMN), and Bioactivity-based MN
(BMN) [104].

The combination of MN with in silico MS/MS fragmentation tools is also an effective
approach for early identification of NP and annotation of their analogues using database
entries [105]. Moreover, MN-based approaches coupled with in silico tools can be used
to dereplicate Peptidic Natural Products (PNPs), antibiotic metabolites with astonishing
diversity, from untargeted MS data acquired on crude extracts to propagate annotations to
structurally related molecules [106].

MolNetEnhancer merges multiple independent in silico methods, providing an up-
grade in MN through the combination of metabolome mining and annotation approaches.
In detail, this workflow incorporates the outputs from MN, MS2LDA, and MS2LDA-MOTIF
in silico annotation methods (e.g., NAP or DEREPLICATOR), and the automated classifica-
tion of chemical entities by ClassyFire, contributing to the identification of unannotated
ions [85,107]. Moreover, the SIMILE (Significant Interrelation of MS/MS Ions via Laplacian
Embedding) algorithm can interrelate small molecules according to their aligned frag-
mentation spectra and infer structural connections in MN. In contrast to other alignment
methods, this tool calculates the statistical significance of spectral alignment, whereas it is
applicable to compounds that have multiple structural differences and produce fragmented
ions that are difficult to align [108].

The metabolomics research software MSDIAL and XCMS Online (for processing
and annotation of LC-MS/MS data), MetaboAnalyst (for metabolic pathway enrichment
and topology analysis), and HMDB (for metabolite identification via MS/MS spectral
search), as well as several algorithms developed for MS data analysis, including MN and
fragmentation trees, enable similarity searches against known molecules reference libraries
or finding statistical relationships between molecular features. However, none of these
tools can search a mass spectra against publicly available repositories to track down related
or identical MS/MS spectra, including those from unidentified molecules [109].

In addition, Dorrestein and co-workers developed a MN tool for the identification of
metal-binding compounds in complex mixtures. After analyzing a sample in a LC-MS/MS
system with and without post-column metal infusion, the resulting data are subjected to a
comparative analysis using GNPS to identify ion species with the same chromatographic
profiles having defined metal-specific mass (m/z) offsets [110].

The Qemistree workflow (freely available via QIIME2 and GNPS) creates a hierar-
chical organization of molecular fingerprints predicted from fragmentation spectra and
unveils molecular structural relationships among molecules through tree-based repre-
sentations, providing further support to the annotation process and offering additional
confidence in individual identifications [111]. While MN clusters and visualizes closely
related metabolites in molecular families, Qemistree calculates all pairwise chemical rela-
tionships between different samples using fragmentation trees and supervised machine
learning from CSI:FingerID and visualizes them in the context of sample metadata [111].
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MN combined with whole genome sequencing of intra-species bacterial strains proved
to be a successful dereplication strategy [112,113]. The open access tool PPNet, available at
(https://github.com/liyangjie/PPNet (accessed on 23 March 2023)), constructs functional
association networks of bacterial species from genome-scale data. Through the analysis of
phylogenetic profiles with binary similarity and distance measures, it derives large-scale
bacterial gene association networks of a single species, allowing a better understanding of
pathogenic mechanisms or other biological phenomena of bacteria [114]. Moreover, Chemi-
cal Proportionality (ChemProp) scores the changes of abundance between two connected
nodes over sequential data series (e.g., temporal or spatial relationships), which allows to
prioritize potential biological and chemical transformations or proportional differences of
biosynthetically related compounds [115], and EMPress enables visualizing phylogenetic
trees in the context of microbiome, metabolome, and other community data [116]. This
tool provides some unique functionalities, such as ordination plots of microbiota and
animations, together with many standard tree visualization features, making exploratory
analyses of various types of omics data easier.

Optimus and ‘ili software enabled 3D molecular cartography using MS/MS data and
following an optimized/standardized methodology. This approach allows for mapping the
spatial distribution of small molecules on several environmental and biological surfaces,
including the human body, and it is expected to advance various applications in medicine,
ecology, agriculture, biotechnology, and forensics [117].

LC-MS/MS Data Visualization and Annotation—Case Studies

In MNP chemistry, MN has been successfully applied to both macro- and micro-
organisms to streamline the discovery of new, bioactive metabolites and address diverse
research questions. MN-guided exploration of large culture collections allows for rapid
dereplication of known molecules and can highlight producers of unique metabolites.
These approaches, combined with large culture collections and growing databases, enhance
data-driven strain prioritization with a focus on novel chemical scaffolds [118].

One of the earlier applications, performed in 2017 by Crüsemann et al., MN, was ap-
plied to a large collection of marine actinobacteria extracts, using marine obligate Salinispora
and marine-derived Streptomyces strains, to explore the effect of different extraction and
culture conditions on their chemical profile, thereby prioritizing the most promising ones
for further studies [119]. MS/MS analysis and subsequent MN dereplication identified
15 molecular families of diverse MNP and their analogues, allowing to rapidly identify
patterns in metabolite production that can be linked to taxonomy, culture conditions,
and extraction methods [119]. Fan et al. mapped the One Strain Multiple Compounds
(OSMAC)-based culture conditions (different culture regimes and culture media) as well
as the anticancer activity and cytotoxicity of marine fungal extracts associated with the
brown macroalga Fucus vesiculosus onto molecular networks [120]. Bracegirdle et al. [121]
profiled the marine tunicate Synoicum kuranui by MN and showed the presence of two
new methylated rubrolides (non-nitrogenous polyaromatic butenolides). Both compounds
were isolated by MS-guided fractionation and showed strong antimicrobial activity. In
another study guided by MN-based metabolomics and cytotoxic activity [122], two new
oligomeric pyrroloiminoquinone alkaloids were isolated. These corresponded to tridis-
corhabdin, the very first trimeric discorhabdin molecule reported from Nature, and the
dimeric didiscorhabdin, both of which contained a novel C-N bridge between discorhabdin
monomers. The use of an additional statistical method (Pearson coefficient, R) allowed
the prediction of bioactivity scores of molecules in molecular networks, and this approach
has been applied to marine fungi, yeast, and seaweeds [120,123,124]. Another example of
the use of MN and GNPS was performed by Bauermeister et al. for the identification of
variances in secondary metabolite production by Salinispora pacifica and Salinispora arenicola
species isolated from different locations, specifically islands situated in the North and South
Atlantic Oceans [125].

https://github.com/liyangjie/PPNet
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Combining MN with pattern-based genome mining in 35 Salinispora species, the
quinomycin-type depsipeptide retimycin A was discovered and structurally characterized.
The biosynthesis of this compound was linked to the gene cluster NRPS40 using pattern-
based bioinformatic approaches [126].

One example of the use of MS/MS Qemistree representation performed by Pinto-
Almeida et al. revealed similarities in fatty acids among marine-derived Micromonospora and
Streptomyces strains and macrolactams and prenol lipids among Streptomyces strains [127].

4.2. Dereplication Using LC-MS/MS, NP Databases, and Informatic Tools

NP databases play an essential role in structural MS-based dereplication efforts. Con-
stant improvements made over the last few years in analytical tools and their availability in
most laboratories have been paralleled with the development of commercial and free open
access databases to assist NP chemists in their efforts to identify known compounds present
in natural extracts. Herein, we will highlight the most recent developments dedicated to
MS dereplication, as well as general-purpose structural databases, and their contribution to
the NP discovery global effort.

4.2.1. GNPS Database, GNPS-Combined Databases, Integrated Analytical and Informatic
Tools, and Other NP Databases to Aid LC-MS/MS Dereplication

The GNPS database/platform comprise the most powerful informatics tools in NP
dereplication [98]. This is an online open access small molecule tandem mass spectrometry
(MS/MS) data community-curated and analysis platform for untargeted metabolomics
without the need for isotopic labeling. As previously mentioned, it is available at (http:
//gnps.ucsd.edu (accessed on 23 March 2023)). It completely shaped the way of perform-
ing dereplication using data-driven social networking of molecules, facilitating spectra
identification, high-throughput annotation of NP in mixtures, finding novel analogues in
desired structure classes, identifying new chemical entities, and promoting worldwide
collaborations. Compared to previous NP databases, which were non-searchable with raw
MS/MS data and did not allow community sharing of raw spectra, this infrastructure made
a great step forward, and it is now the most utilized among the NP research community [98].
MS/MS molecular networking analysis integrated with GNPS annotation is compatible
with high-throughput extract analysis, thus streamlining extract/strain prioritization and
the evaluation of culturing conditions. These capabilities are complemented by an ever-
growing collection of public libraries, which includes more than 80,000 MS/MS spectra
and allows the fast dereplication of a wide range of NP directly from MS/MS data without
the need to perform any fractionation steps. GNPS is continuously growing due to research
community data contributions, and it is constantly improving its solutions/informatic
tools for data analysis performance, as described below in the reported studies. Having
unparalleled capabilities to build MN on MS/MS fragmentation data, together with the
possibility to associate metadata such as biological activity and genomics data with the
analyses, has revolutionized the NP discovery field.

GNPS Dashboard enables one to explore the GNPS functionalities; it is compatible
with file formats .mzXML, mzML, CDF, and raw formats. Analysis and visualization with
this tool permitted the creation of URL links and QR codes to promote data sharing [128].

MassBank (http://www.massbank.jp (accessed on 23 March 2023) and http://massbank.
eu/MassBank/ (accessed on 23 March 2023)) has been a source of data for open libraries,
such as GNPS and Human Metabolome Database (HMDB) libraries, MetaboLights, the
National Institutes of Standards and Technology (NIST) spectral library, and the MassBank
of North America (MoNA; http://mona.fiehnlab.ucdavis.edu/ (accessed on 23 March
2023)). The mzCloud (https://www.mzcloud.org/ (accessed on 23 March 2023)) library
contains spectra generated from the same raw data that were used to create MassBank
records. The disadvantage is that a spectrum that corresponds to a specific NP across
the different databases can have different names and accession numbers due to inter-
crossing complexity. Inspired by chemoinformatics InChIKeys, which encode the skeleton,

http://gnps.ucsd.edu
http://gnps.ucsd.edu
http://www.massbank.jp
http://massbank.eu/MassBank/
http://massbank.eu/MassBank/
http://mona.fiehnlab.ucdavis.edu/
https://www.mzcloud.org/
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stereochemistry, and charge of the compounds, SPLASH (SPectraL hASH; http://splash.
fiehnlab.ucdavis.edu/ (accessed on 23 March 2023)) codes consisting of three alphanumeric
blocks were developed to assign unambiguous, database-independent spectrum identifiers
that mitigate the previously outlined issue. SPLASH has been implemented in MassBank,
MoNA, GNPS, HMDB, MetaboLights, and mzCloud, as well as in the software tools
including MZmine, MSDIAL, RMassBank, BinBase, Bioclipse, and the Mass Spectrometry
Development Kit (MSDK; https://msdk.github.io/ (accessed on 23 March 2023)) [129].
Open access Monoterpene Indole Alkaloid Database (MIADB), comprising MS/MS data,
is available from MetaboLights under the identifier: MTBLS142 (https://www.ebi.ac.uk/
metabolights/MTBLS142 (accessed on 23 March 2023)) [130] and was uploaded to the GNPS
platform [131]. GNPS analysis combined with the LipidXplorer database has been proposed
as an effective approach for assisting structure elucidation and expanding the identification
rate of compounds in dereplication studies. By merging the results from both tools and
performing a network visualization in Cytoscape, 30 glycoalkaloids were identified in
Solanum pseudoquina [132]. Moreover, SistematX, available at (http://sistematx.ufpb.br
(accessed on 23 March 2023)) is a web-based repository for secondary metabolite data
storage and management [133].

Additional assistance in metabolite identification can be provided by MS/MS-Chooser,
which automates the creation and uploading of MS/MS reference spectra in GNPS. By
enabling rapid data acquisition and analysis (selection of MS/MS spectra), this workflow
aids in building public MS/MS spectral libraries, thereby improving and reinforcing
annotation tools [134].

The MASST tool (mentioned in bioactivity screening Section 2.2) makes MS/MS
searches easier and promotes the reuse of previously reported spectral data, such as public
small molecule MS data and environmental and clinical MS datasets. A search engine
for public data can be found in MASST (available at https://proteosafe-extensions.ucsd.
edu/masst/ (accessed on 23 March 2023)), which offers access to several repositories
and libraries and enables users to search a single MS/MS spectrum against public GNPS
spectral libraries and all public MS/MS datasets [67].

In GNPS/MassIVE, an online repository accessible at (https://massive.ucsd.edu/
(accessed on 23 March 2023)), all public data are made MASST searchable, includ-
ing GNPS user-contributed spectra, GNPS libraries, all three MassBanks, ReSpect, MI-
ADB/Beniddir, Sumner/Bruker, CASMI, PNNL lipids, Sirenas/Gates, EMBL, MCF, and
numerous other libraries accessible at https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp
(accessed on 23 March 2023) [67]. Though molecules with nearly identical fragmentation
patterns, such as isomeric metabolites, cannot be distinguished by MASST searches, an
original metabolite standard and the use of an orthogonal property (such as retention
time) are required. Besides MS/MS spectra search with MASST, the GNPS/MassIVE is
a repository for untargeted MS/MS data with sample information (metadata) and anno-
tated MS/MS spectra that can be searched using controlled vocabularies and annotations
(ReDU). In 2021, GNPS and the integrated metabolomics data repository MassIVE included
1800 public datasets (>490,000 MS files and >1.2 billion MS/MS spectra), and with over
300,000 visits per month by users from 160 countries, it is one of the most popular MS/MS
spectra repositories [135]. Besides MASST, many other analytical tools connected to the
GNPS enable direct matching of data to all public MS/MS reference libraries for annotation
and MN, thereby facilitating the identification of known metabolites and new derivatives
(analogues) of these, as well as fully unknown metabolites and their molecular families.
This obviously not only increases the rate of annotation but also helps unearth the real
chemical inventory of natural extracts [136]. Moreover, the GNPS infrastructure gives users
the power to update annotations in public spectral datasets provided by diverse users while
continuously recording all changes [137]. GNPS datasets can also be supplemented with
microbiome-related metadata since the software tools used to analyze microbiome data,
such as QIIME 2 [138] and Qiita [139], are compatible with the metadata formats used by
GNPS/MassIVE. Additionally, by providing a global context to their data and making use

http://splash.fiehnlab.ucdavis.edu/
http://splash.fiehnlab.ucdavis.edu/
https://msdk.github.io/
https://www.ebi.ac.uk/metabolights/MTBLS142
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of an easier-to-use quick start infrastructure (https://gnps-quickstart.ucsd.edu (accessed
on 23 March 2023)), MASST and ReDU enable researchers to control the information in
the entire GNPS/MassIVE repository. According to Leão et al., the output from GNPS
can also be imported into other analysis programs such as Cytoscape, Metaboanalyst, or
QIIME 2, which offer interactive network, statistical, machine learning, or multivariate
analysis and visualization capabilities [135]. The above-mentioned software, Qiita, is a web
tool that aggregates multi-omics data on microbiome function and composition, enabling
meta-analysis and comparison of microbiomes across biospecimens and data layers [139].

GNPS users can take advantage of a multitude of additional tools, including:
(1) Lickety-split Ligand-Affinity-based Molecular Angling System (LLAMAS), a platform
for NP identification and dereplication of DNA-binding molecules from complex mix-
tures. It uses ultrafiltration-based LC-PDA-MS/MS-guided DNA-binding assays inte-
grated also with Dictionary of Natural Products (DNP), and SciFinder [140]; (2) Con-
CISE (Consensus Classifications of In Silico Elucidations) establishes accurate putative
classifications for entire subnetworks by combining MN, spectral library matching, and
in silico class predictions [141]; (3) Spectrum_utils is an open access tool, available at
https://github.com/bittremieux/spectrum_utils (accessed on 23 March 2023) for com-
bined and standardized MS data processing and visualization of metabolomics and pro-
teomics data in Python [142]; (4) MetEx, is an open access application, available at https:
//mo.princeton.edu/MetEx/ (accessed on 23 March 2023), which is suitable for the analysis
and visualization of LC-MS metabolomics data of microbial cultures grown under hun-
dreds of elicitors and conditions, facilitating the detection of elicitors/conditions inducing
the biosynthesis of several novel and cryptic secondary metabolites [143]; and (5) MetCirc,
is a tool for metabolites dereplication that is based on the alignment and comprehensive
calculation of pairwise similarities between MS/MS spectra [144].

Additional in silico MS/MS approaches, e.g., SIRIUS [145], CSI:FingerID [146], and
DEREPLICATOR [147], were also integrated in the GNPS community library. Compatible
with GNPS, DEREPLICATOR is an algorithm that allows high-throughput PNP identifi-
cation. This approach is capable of identifying one order of magnitude more PNPs (and
their new variants) than any previous dereplication efforts [147]. DEREPLICATOR+ further
improves identification by extending its applicability to polyketides, terpenes, benzenoids,
alkaloids, flavonoids, and other classes of NP. Moreover, it also allows cross-validation
of genome mining and peptidogenomics/glycogenomics data [148]. NRPro is a MS/MS
analysis platform for PNP dereplication and annotation that comprises main functionalities
such as automatic peak annotation or statistically validated scoring systems to support the
characterization/identification processes [149].

In contrast, VarQuest was developed for the identification of PNPs by illuminating
the connected components in a MN even if they do not contain known PNPs and only
contain their variants. VarQuest discloses an extra order of magnitude of PNP variants
when compared to all the previous PNP research efforts. Differing from the ‘comparative
metabolomics’ postulation, two related bacteria are unlikely to produce identical PNPs
(even though they are likely to produce similar PNPs), which challenges the utility of GNPS
for PNP identification [150].

Unlike proteomics, in which optimum acquisition parameters are well described,
optimum parameters are not available for generating reliable metabolomic data for MN
analysis on the GNPS. Olivion et al., 2017 established an effective system (for Agilent
Technologies instruments), simplifying the dereplication process by clearly distinguishing
isobaric isomers eluted at different retention times, annotating the MN with chemical
formulas, and providing acceptance to semi-quantitative data [151].

4.3. Dereplication Using MS or MS/MS Advanced Computational Prediction Tools

Over the last ten years, several new approaches have been reported for MS prediction
of small molecules that rely on established computational methods such as combina-
torial optimization (MetFrag [152], MetFusion [153], MAGMa [154], MIDAS [155], and
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FT-BLAST [156]) and machine learning (ISIS [157], FingerID [158], CFM-ID [159], and
CSI:FingerID [146]) techniques. The emergence of new tools for the prediction of spectral
data enabled the development of advanced MS-based dereplication methodologies that
clearly translated into a significant improvement in the process of drug discovery from
natural sources, including marine biosources. Most of the above MS-based prediction
methods, MetFrag, MetFusion, MIDAS, ISIS, FingerID, CFM-ID, and CSI:FingerID, are
not supported by spectral library searching; instead, they rely on more comprehensive
molecular structure MS/MS database searching. Dührkop et al. developed CSI: FingerID
for searching a molecular structure database using MS/MS data. In this workflow, the
molecular properties of the unknown molecules are predicted by combining computa-
tion and comparison of fragmentation trees with machine learning techniques, linking
MS/MS data to open access chemistry databases of molecular structures [146,160]. Signifi-
cantly increased identification rates were reported for CSI:FingerID when compared with
all the existing state-of-the-art metabolite identification tools, such as FingerID, CFM-ID,
MAGMa, MIDAS, and MetFrag. In fact, 150% more accurate identifications were achieved
by CSI:FingerID than the second-best search method, FingerID. A comparison of prediction
performance on a GNPS dataset of 3868 compounds showed that CSI:FingerID reached
5.4-fold more unique identifications compared with the runners-up FingerID and CFM-ID
methods, while it correctly detected nine compounds that could not be identified by any
other method [160] (Figure 2).

Recently, Dührkop et al. launched SIRIUS 4 (https://bio.informatik.uni-jena.de/
sirius/ (accessed on 23 March 2023)), a Java-based software framework for the analysis of
LC-MS/MS data of metabolites and other “small molecules of biological interest” [145].
More recently, this platform integrated a collection of computational MS tools that were
integrating CSI:FingerID [146] with Confidence Of Small Molecule IdentifiCations (COS-
MIC) workflow, which performs high-confidence spectral library searching and metabolite
annotation of previously unknown structures [161].

In recent years, there has been great development of platforms that integrate various
computational MS tools relying on molecular structure database searching, such as ZO-
DIAC (Zero-One Data: Ideal seed Algorithm for Clustering), a network-based algorithm for
de novo molecular formula annotation that enables ranking novel molecular formulas that
are not present in the most comprehensive public structure databases [162]. CANOPUS
(Class Assignment and Ontology Prediction Using Mass Spectrometry), a software for
classifying unknown metabolites according to fragmentation spectra using HR-MS/MS
data [160], and NPClassifier, a deep-learning neural network-based NP structural classifi-
cation tool that automatically classifies NP-counted Morgan fingerprints, thus providing
the NP structures of their underlying assets [163]. In the same way, SIRIUS 4, mentioned
above, combines high-resolution isotope pattern analysis and fragmentation trees with
structural elucidation, providing a robust assessment of molecular structures from MS/MS
data for big data [145]. The GUI interface of the SIRIUS 4 software is presented in Figure 3.
Its users can analyze full LC-MS datasets rather than just one spectrum at a time, and in
this way, MS-oriented annotations can be obtained for all the detected resources and not
just for those that passed a preliminary statistical test. In fact, SIRIUS 4 achieved reported
identification rates of more than 70% on challenging metabolomics datasets [145,146].

Computational MS methods for small molecule annotation have evolved greatly in
recent years, as demonstrated by the Critical Assessment of Small Molecule Identification
(CASMI) contest (www.casmi-contest.org (accessed on 18 January 2023)) that was held
in 2016 [164,165]. One of the challenges of this contest included the determination of
molecular formulas using the Seven Golden Rules, Sirius 2, and MS-FINDER software,
which were queried in various NP databases, including DNP, UNPD, ChemSpider, and
REAXYS, to obtain the molecular structures. To rank these metabolites, a variety of in silico
fragmentation tools, such as CFM-ID, CSI: FingerID, and MS-FINDER, were used [164].
Another challenge was the annotation of 19 NP peaks detected across 16 LC-HRMS/MS
profiles. For the purposes of calculating in silico fragmentation and using the molecular
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formula, XCMS, IPO, RMassBank, CAMERA, and MeHaloCoA tools were used, and two
additional external tools, SIRIUS 3 and CFM-ID, were also integrated [166]. The tool
MeHaloCoA (Marine Halogenated Compound Analysis) incorporates a mathematical filter
based on mass isotopic profiles that allows the selective detection of halogenated (Cl and
Br) molecules [167].
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Several achievements and pitfalls were revealed from this contest, and valuable con-
clusions were drawn, such as the anticipation that improvements to machine learning
approaches will continue to be introduced as more training data of high quality and annota-
tions become available, whereas chemistry-focused developments such as MS-FINDER will
continue to be essential, especially to cover cases where no training data are available [164].
However, several challenges remain. As simple combinatorial optimization approaches
such as MetFrag and MAGMa have shown better performance, it is expected that the
improved incorporation of experimental data—metadata—will improve the success of
annotations, especially in the context of big data [164].

4.4. Dereplication Using Gas Chromatography-Mass Spectrometry (GC-MS), LC-MS Integrated
Ion Mobility Spectrometry (IMS), and LC-Matrix Assisted Laser Desorption/lonization Mass
Spectrometry MALDI-MS

A study by Carnevale Neto et al. recently showed that dereplication of NP using
GC-MS-based methods can be significantly improved when combining the optimized
AMDIS (Automated Mass Spectral Deconvolution and Identification System) software
with the RAMSY (Ratio Analysis of Mass Spectrometry) deconvolution tool [168]. Though
metabolite identification using GC-MS data will continue to require more caution, many
NP are not volatile enough to be analyzed by GC. Furthermore, the high temperatures
typically used in the inlet, column, and ion source of a GC (>300 degrees) often decomposes
NP or cause their structural rearrangement.

The GNPS dashboard also enables one to explore the functionalities related to the
dereplication methods described below. The MS data repositories include GNPS/MassIVE,
MetaboLights, ProteomeXchange, and Metabolomics Workbench, as well as data from
proteomics resources: PRIDE and MassIVE [128,169,170].
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To facilitate the analysis of GC-MS data and metabolite annotation, the MSHub
machine-learning deconvolution tool was deployed within GNPS. With this approach, the
compound fragmentation patterns are auto-deconvoluted via unsupervised non-negative
matrix factorization, and the reproducibility of deconvoluted fragmentation patterns across
samples is quantified, providing a measure of de-convolution performance [171].

Marshall et al. suggested Integrating Ion Mobility Spectrometry (IMS) as a valuable
NP dereplication tool [172]. As extract complexity defies the resolving power of modern
LC-MS/MS pipelines, by using IMS with LC-MS/MS, both metabolite detection and the
quality of MS/MS spectra are improved. This is because IMS provides an additional
separation that is orthogonal to chromatographic and mass spectral separations. The
IMS technique separates the ions in the gas phase and enables the measurement of their
rotationally averaged Collision Cross-Section (CCS), which is an important distinguishing
characteristic for identification purposes. The effect of integrating IMS in LC-MS/MS for
the characterization of NP was recently evaluated on MS/MS fragmentation data of an
actinobacterial extract spiked with 20 commercial standards using both Data-Dependent
Acquisition (DDA) and Data-Independent Acquisition (DIA). Examining those datasets in
the GNPS platform revealed that the inclusion of IMS increased both spectra quality and
metabolite detection, particularly for samples analyzed in DIA mode [173].

Matrix Assisted Laser Desorption/lonization Mass Spectrometry with Time-of-Flight
detector (MALDI-TOF-MS) can be used for efficient dereplication of microbial isolates,
including their taxonomic identification and characterization, for downstream studies
with negligible loss of unique organisms. The dereplication performance of whole-cell
MALDI-TOF MS-based analyses and 16S rRNA gene sequencing was compared using
49 bacterial cultures, and both methods were found to yield comparable taxonomic as-
signments up to the genus level [174]. The agreement of the methods at the species level
was limited, which was attributed to the small mass spectral reference databases, though
the latter can be significantly improved in the future, unlike 16S rRNA gene analysis,
whose methodological limits have reached a plateau. Moreover, the MALDI-TOF MS
technique was deemed to provide superior resolution than 16S rRNA gene analysis, as
it can better distinguish bacteria with very high 16S rRNA similarity (i.e., > 99.2%). Be-
sides the dereplication of bacterial isolates, MALDI-MS can also enable the rapid and
comprehensive profiling of NP mixtures. In particular, with the provision of biosynthetic
heavy-isotope-labeled precursors, MALDI-MS can be a powerful method for dereplication
and identification of unique metabolites. The power of this approach was exemplified
with the detection/characterization of cryptomaldamide and several new peptides of the
viequeamide class in a marine cyanobacterium [175].

SpeDE is an algorithm available at https://github.com/LM-UGent/SPeDE (accessed
on 23 March 2023), which enables the rapid dereplication of microbial isolates resulting
from clinical or environmental studies through the dereplication of their MALDI-TOF mass
spectra. Being capable of identifying sets of similar spectra at the species level, this tool
exceeds the taxonomic resolution of other methods and effectively helps minimize the
number of redundant isolates. Given its high speed and accuracy, the SpeDE algorithm
streamlines the culturomics approach to bacterial isolation campaigns [176].

Mass spectrometry imaging for two- (2D) or three-dimensional (3D) molecular vi-
sualization of biological structures is becoming increasingly popular by leveraging the
unique analytical advantages offered by MALDI-MS and DESI-MS (Desorption Electro-
spray Ionization) systems [177,178]. Owing to the sheer quantity of data generated, the
visualization, analysis, interpretation, storage, and sharing of 3D imaging MS data remain
significant challenges. MetaboLights can handle the large mass spectrometric datasets
produced from the 3D imaging of biospecimens, such as tissue sections, entire organs, or
microbial colonies [179,180].

A schematic representation of the existing methodologies for MS/MS, GC-MS, IMS,
and MALDI dereplication is presented in Table 1.

https://github.com/LM-UGent/SPeDE
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Table 1. Databases for MS/MS, GC-MS, IMS, and MALDI dereplication, MS/MS visualization and
annotation tools, and MS/MS, GC-MS, IMS, and MALDI-MS processing informatic analysis tools.

Databases for MS/MS Dereplication Databases for GC-MS, IMS,
and MALDI Dereplication

GNPS
GNPS/

MassIVE Metabolitghts MarinLit
GNPS/

MassIVE MetaboLights

Metabolomics
workbench MassBank ReSpect NIST

MSHub/
GNPS ProteomeXchange

MoNA mzCloud SPLASH LipidXplorer
Metabolomics
Workbench PRIDE

Sumner/
Bruker CASMI PNNL Lipids

Sirenas/
Gates

GC-MS, IMS, and MALDI-MS
Processing Informatic Analysis Tools

EMBL MCF SistematX NPBS MSHub/
GNPS

CMNPD MIADB/
Beniddir

NPNPD Antibase SpeDE

HMDB MIADB SistematX DNP AMDIS

UNP ChemSpider Reaxys SciFinder RAMSY

PubMed Community-curated
data

Users Libraries -

MS/MS Visualization and Annotation Tools
PCA PoPCAR PLS-DA MN

MS2LDA IIMN NAP DFMN-ISD
FBMN CLMN BBMN BMN

MolNetEnhancer MS2LDA-MOTIF DEREPLICATOR SIMILE

MetaboAnalyst MSDIAL
XCMS
Online HMDB

Fragmentation
Trees

GNPS Dashboard Optimus and ‘ili EMPress

Qemistree ChemProp PPNet -
MS/MS Processing

Informatics Analysis Tools
GNPS Dashboard MASST GNPS Mzmine.FBmn

CAM XCMS Online HMDB MSDIAL
SPLASH RMassBank BinBase MZmine
Bioclipse MSDK SIRIUS 1 to 4 CSI:FingerID

DEREPLICATOR DEREPLICATOR+ NRPro ReDU
QIIME and QIIME 2 Qiita CytoScape Optimus and ‘ili

MetaboAnalyst MS/MS-Chooser ChemProp PPNet
MeHaloCoA SpeDE ConCise ClassyFire

Bioclips MSDK XCMS Qemistree
EMPress LLAMAS NP Analyst MetFrag

MetFusion MAGMa MIDAS FT-BLAST
ISIS FinderID CFM-ID MS-FINDER

MetEX MeTCirc Spectrum_utils COSMIC
ZODIAC CANOPUS NPClassifier IPO
CAMERA - - -

4.5. Dereplication Using NMR Spectroscopy

Although MS/MS is much more sensitive, NMR is more robust and accurate. NMR-
based dereplication databases have also evolved over the last few years, from strategies that
employed calculated/real NMR data or structural features easily recognizable in 1D NMR
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spectra to those that employed 2D NMR data. Advances in NMR include pulse sequences
for molecular structural characterization of isolated compounds, 13C NMR metabolomics
platforms for screening NP libraries, and miniaturization via microNMR spectroscopy [181].
The structural properties that define 13C NMR signals as characteristic representations of a
given molecule are the chemical shifts (δ in ppm) and coupling constants (J in Hz), along
with the line widths (∆νin Hz). These parameters are bound both to the molecule and
the NMR experimental conditions by quantum mechanical (QM) principles. During the
development of the HiFSA (1H Iterative Full Spin Analysis) method for preventing struc-
tural misassignments of NP, Pauli et al. highlighted the importance of submitting FID (Free
Induction Decay) files with publications and in databases to support advances in NMR
dereplication and structure elucidation [182]. The power of NMR for structural elucidation
of NP has been illustrated in numerous studies, including the rigorous characterization
of several novel peptides from the viqueamide class that were isolated from a marine
cyanobacterium [175]. A fragment-based strategy relying on digital 1H NMR profiles gen-
erated by HiFSA has been developed for dereplicating structurally related molecules that
have the same carbon skeleton but different numbers of substituents and/or substitution
patterns [183]. In this approach, digital representations of known structural motifs are
generated and subsequently combined as building blocks to facilitate the interpretation of
1H NMR spectra of increasingly complex molecules [183].

NMR analysis is a powerful complement to MS approaches, providing useful data sets
in a reasonable time frame. However, the high degree of signal overlap, particularly in 1D
NMR spectra, combined with the insufficient precision in NMR spectroscopic analysis and
the rationality in reporting ∆δ and ∆J values limit the applications of this approach in high-
throughput dereplication [184]. The low sensitivity of NMR is another limitation, but 13C
NMR has many advantages for dereplication, such as its universal detection capacity, which
enables simultaneous high-resolution analysis of any organic compounds, and its ability
to distinguish structurally close NP, including stereoisomers [185,186]. In this context, the
MixONat algorithm was developed in Python for 13C NMR-based dereplication. It analyzes
1H-13C NMR spectra with the options to apply molecular weight (MW) filtering and to
take into account DEPT-135 and DEPT-90 data for distinguishing different carbon types
(i.e., CH3, CH2, CH, and C), which can help improve dereplication performance [185,186].

A computer-aided 13C NMR-based dereplication method was reported by Bakiri et al.
for the metabolite profiling of NP extracts without any fractionation [187]. By comparing
the 13C NMR chemical shifts of the crude extract with those predicted from database
records, the algorithm calculates matching scores and creates a list of metabolites that are
most likely to be present. In another study, one-dimensional 13C NMR data and machine
learning methods were employed to develop the XGBoost classifier, which predicts the
chemical class of NP with higher accuracy, outperforming other algorithms of the same
type [188].

Several informatics tools have been developed for comparing 2D NMR spectra with
libraries of reference spectra to dereplicate NP and determine molecular structures. How-
ever, spectroscopic artifacts, solvent effects, and the interactive effect of functional group(s)
on chemical shifts hamper the efficiency of this approach [184]. To simplify spectral analysis
and accelerate chemical identification of components in complex mixtures, the 2D NMR
barcoding methodology was developed. It uses the molecular information from NMR
spectra (i.e., 1H-13C correlation signals and their spatial locations in the δH−δC coordi-
nate space) to generate 2D barcodes that facilitate dereplication by in silico matching of
experimental and reference barcodes to facilitate the chemical identification of complex
mixtures [189].

In 2018, Bakiri et al. developed a 2D NMR-based method for the dereplication of
metabolite mixtures that relied on the combination of Heteronuclear Multiple Bond Cor-
relation (HMBC) and Heteronuclear Single Quantum Correlation (HSQC) spectra. The
latter provides very rich information about short-range and long-range H-C correlations
that occur in the carbon skeleton of individual chemical entities. In analogy to molecular
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networking from MS/MS spectra, this method uses the HMBC spectrum of a metabolite
mixture to create the network of 1H-13C correlations, which is then divided into clusters
of correlations using a community detection algorithm, and the clusters are subsequently
assigned to specific molecular structures by searching a database containing theoretical
HMBC and HSQC correlation data of natural metabolites [190]. A pipeline that integrates
GNPS-curated MS/MS data with HSQC and HMBC 2D NMR data using a robust nJC,H
network analysis has been developed by Kuhn et al. for enhancing NP identification
in complex mixtures. This aimed to exploit the complementary advantages offered by
NMR (high reproducibility and efficiency in structure elucidation) and LC-MS/MS (high
sensitivity and accuracy) techniques. In this approach, MS/MS-based molecular network
dereplication is performed, and the identified candidate structures are ranked according
to the probability of being present in the sample by predicting their HMBC-HSQC NMR
spectra and comparing them to the measured spectrum of the mixture [191]. Both the
prediction of NMR spectra and the matching with the experimental data are performed
by the embedded NMR filter algorithm. The specific tool has the capability to identify
uncatalogued compounds, and it has been shown to provide comparable results with COL-
MAR (Complex Mixture Analysis by NMR), which is the leading system for elucidating
the components of metabolite mixtures [185].

Small Molecule Accurate Recognition Technology (SMART) is another tool that was
recently developed to accelerate the discovery and characterization of new NP. This machine
learning tool uses an artificial intelligence (AI) algorithm based on convolutional neural
networks (CNN) to map the HSQC NMR data of the analyzed mixture or compound
into a multidimensional space, which has been formed by a library of 100,000 known
molecules with both experimental and simulated HSQC data. In these SMART maps,
similar compounds are placed near one another and dissimilar compounds are placed far
apart, thus allowing for the revelation of candidate structures for a mixture/secondary
metabolite by assessing the spatial position of their queried data in HSQC space [192].
Queries can be performed using .csv, .tsv, TopSpin peak data, or manually entered data,
whereas the biological context of the results is aided by the provision of external links to
Natural Products Atlas [92], MIBiG [193], and GNPS [98] in the case of known NP.

SMART-Miner is also a convolutional neural network-based tool that uses 1H-13C
HSQC spectral data for NP identification. This method performed accurate identification of
individual metabolites with higher peak intensity or similar chemical shifts from different
metabolites, which is a drawback, but it presented higher performance when compared
with other NMR-based metabolomic methods [194].

SMART 2.0 was launched for the analysis of extracts using marine cyanobacterium
Symploca with the aid of MS/MS-based MN, leading to the fast identification of a new
chimeric swinholide-like macrolide, symplocolide A, as well as the annotation of swin-
holide A, samholides A-I, and several other novel derivatives. Another example was the
use of SMART 2.0 for the characterization of novel cyclic peptides, demonstrating the
groundbreaking potential of combined traditional and deep learning-assisted analytical
approaches to overcome old challenges in NP lead discovery [192,195].

MatchNat is another in silico tool that was specifically developed for the 2D NMR-
based dereplication of diterpene alkaloids (DAs) in complex mixtures. This dereplication
strategy is based on heteronuclear multiple bond correlation (HMBC), and it utilizes the
characteristic HMBC patterns provided by the majority of C19-DAs as diagnostic signals for
recognizing already known compounds and identifying novel DAs [196]. In this context,
MatchNat performs an automatic comparison of experimental NMR data from complex
mixtures with those of a reference database consisting of approximately 350 natural C19-
DAs [196].

Another example of new developments in NMR-based dereplication methodologies
is DEREP-NP (freely available at https://github.com/clzani/DEREP-NP (accessed on
23 March 2023)), which is applicable to purified natural products or fractions containing
a small number of compounds. This platform generates a database containing counts

https://github.com/clzani/DEREP-NP
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for 65 structural fragments present in the >220,000 NP of the Universal Natural Products
Database (UNPD), while inferring the counts of the same fragments in an unknown com-
pound from its NMR spectrum (1H, HSQC, and/or HMBC). The latter data are used to
create a numeric combination, which is searched against the database in order to retrieve
candidate structures [197].

A recently released approach uses Diffusion-ordered NMR spectroscopy (DOSY) to
dereplicate NP in mixtures of compounds [198]. This technique enables accurate measure-
ment of the diffusion coefficient (D) for the different mixture components, which is mainly
related to MW. The same parameter can be accurately predicted for any compound present
in the DEREP-NP database using a multiple linear regression model that involves eight
structural and chemical properties, including molecular weight. By matching experimental
D and structural features derived from NMR analysis with predicted D and calculated
structural features in the database, the dereplication of known NP in a mixture can be
achieved. On the other hand, the absence of hits from database searches can be used to
track down new compounds [198].

Diaz-Allen et al. suggested that 1D-Total Correlation Spectroscopy (1D-TOCSY) offers
unique capabilities for NP dereplication, as it allows not only to detect known compounds
but also to identify possible new structures in a mixture that are structurally related to
known compounds in a TOCSY library [199]. In another study, a pipeline combining data
from GC-MS and NMR analysis with the use of Statistical Total Correlation (STOCSY)
spectroscopy was developed to achieve higher confidence in compound identification [200].
Moreover, MADByTE (Metabolomics and Dereplication by Two-Dimensional Experiments)
is another platform that was developed for the dereplication of known compound scaffolds
and the prioritization of bioactive metabolites from prefractionated extracts [201]. By
combining TOCSY and HSQC spectra, it identifies spin system features within complex
mixtures and then matches spin system features between samples to create a chemical
similarity network for a given set of samples. Unlike many of the existing NMR-based
profiling tools, it does not require a bespoke spectral reference library against which to
compare NMR data. However, the use of a database of pure compounds with MADByTE
is also possible, and it is particularly helpful when the dereplication of specific compound
classes (e.g., resorcylic acid lactones, spirobisnaphthalenes) is of interest [201,202].

NMR and NP Databases for Dereplication

Regarding databases containing structural information on MNP, since its initial de-
velopment as an in-house developed system in the 1970s by Profs. Munro and Blunt
from the University of Canterbury, MarinLit (https://pubs.rsc.org/marinlit/ accessed on
23 March 2023) stands as one of the most useful tools in marine NP dereplication. The
database is currently maintained by the Royal Society of Chemistry and, through a recently
launched web interface, offers comprehensive coverage of more than 37,000 articles on
MNP. Searching the database for dereplication purposes offers multiple possibilities using
any combination of substructure, NMR structural features obtained from direct interpreta-
tion of spectra, calculated 13C and 1H NMR shift data, exact mass, chemical formula, UV
λmax, and log E. It is linked to taxonomy, and full references to publications describing the
molecules are also provided.

The NP Atlas, available at (www.npatlas.org accessed on 23 March 2023), was created
in 2019 and emerged as a comprehensive database covering all microbially-derived NP
published in the peer-reviewed primary scientific literature [196]. Its initial version cov-
ered more than 25,000 microbial compounds and contained referenced data for structure,
substructure, compound names, source organisms, isolation references, total syntheses,
physical properties, author, discovery timeline data, and instances of structural reassign-
ment. This open access community-supported repository was established under FAIR
principles (Findable, Accessible, Interoperable, and Reusable), and it is combined with
other NP databases, including the Minimum Information about a Biosynthetic Gene Cluster
(MIBiG) repository and the GNPS platform [92]. This database has been updated in 2022 to

https://pubs.rsc.org/marinlit/
www.npatlas.org
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The Natural Products Atlas 2.0, including a full RESTful application programming interface
(API), a new website framework, and was expanded in terms of metabolites, including
8128 new compounds, bringing the total to more than 32,000 [203]. Full taxonomic de-
scriptions for all microbial taxa and chemical ontology terms from both NP Classifier and
ClassyFire were added; configurational assignments were revised; and data from external
resources was also added, including the integration of CyanoMetDB [203,204].

NP-MRD (The Natural Products Magnetic Resonance Database) is an open access
NMR repository, available at https://np-mrd.org accessed on 23 March 2023, supporting
community deposition of NMR meta-data assignments and NP NMR spectra (1D and
2D) [205].

The StreptomeDB 3.0 includes a compendium of more than 6000 NP produced by
actinomycetes [206]. Apart from structures or substructures, NMR and/or MS/MS data can
be used as input in searches of the database for dereplication purposes. It also enables the
interactive phylogenetic exploration of Streptomyces and their isolated or mutasynthesized
NP, being the only public online database offering this functionality. The entries in this
database are hyperlinked to several spectral, (bio)chemical, and chemical vendor databases
and to MIBiG. Moreover, prediction methods for ADMET profiling are available. Finally,
structures combined with metadata can be downloaded in SD-Format, allowing their
incorporation into other structural features of NP dereplication tools such as DEREP-NP.

The COlleCtion of Open NatUral producTs (COCONUT), an open access collection
of NP launched in 2020, is one of the biggest resources for NP annotation. The database
includes structures of more than 400,000 unique NP (without stereochemistry) that can
be extended to more than 730,000 when stereochemical variants are taken into consider-
ation [13]. It offers interesting functionalities such as predicted bioactivities, molecular
descriptors, known stereochemical variants of each entry, and bibliographic references.
As in the case of StreptomeDB 3.0, the full set of structures can be downloaded in SDF
or SMILES format, allowing their use in combination with other structural feature-based
databases for dereplication purposes [13].

More recently, in 2021, Lianza et al. proposed two NMR-based tools: the Predicted
13C NMR data of Natural Products (PNMRNP) database, which originates from UNPD,
and KnapsackSearch, a database generator that provides taxonomically focused libraries of
NP [91].

The Comprehensive Marine Natural Products Database (CMNPD) is an open access
database (available https://www.cmnpd.org accessed on 23 March 2023) that includes
information on 31,000 marine-derived chemical entities. By providing a plethora of data,
such as physicochemical and pharmacokinetic properties, standardized biological activity
data, systematic taxonomy, geographic distribution of source organisms, and detailed litera-
ture citations, it aims to facilitate structure dereplication, the discovery of lead compounds,
data mining of structure-activity relationships, and the study of chemical ecology [207].

Natural Products and Biological Sources (NPBS) is a repository of NP chemical data
that correlates NP with their biological sources, a feature that is not available in all the
databases [152].

A schematic representation of the existing methodologies for NMR dereplication is
presented in Table 2.

Table 2. Databases for NMR dereplication and NMR processing informatics analysis tools.

Databases for NMR Dereplication

Antibase MarinLit
NP-MRD NP Atlas

MIBiG StreptomeDB 3.0
PNMRNP COCONUT

UNP KnapsackSearch
NPBS CMNPD

https://np-mrd.org
https://www.cmnpd.org
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Table 2. Cont.

NMR Processing Informatic Analysis Tools

HiFSA MixONat
XGBoost classifier 2D barcodes

NMRfilter COLMAR
SMART SMART 2.0

SMART- Miner MatchNat
DEREP-NP MADByTE

RESTful NP Classifier
ClassyFire CyanoMetDB

When comparing the existing LC-MS/MS, GC-MS, LC-IMS, LC-MALDI-MS, and
LC-MS dereplication tools (Table 1; Section 4.4) with the NMR dereplication tools (Table 2),
it is emphasized that the methods for dereplication using MS are far more developed than
for NMR. Further research on NMR methods, especially when integrated with MS/MS
methods, would increase dereplication efficiency and accuracy.

5. Genome Sequencing Methods for Dereplication and Structure Elucidation

NP are produced by biosynthetic enzymes that build core scaffolds or carry out pe-
ripheral changes and can be defined as NP families, introducing pharmacophores and
allowing metabolic diversity. Our capacity to access and characterize NP pathways us-
ing sequence-similarity-based bioinformatics tools has been substantially improved by
contemporary genomics approaches [208]. Rapid and low-cost genome sequencing, as
well as the development of bioinformatical analysis tools for biosynthetic gene cluster
identification in conjunction with MS-based molecular networking, aided in the process of
dereplication [22]. Fascinating cases of unique enzymology have been recently discovered,
supporting NP structure elucidation through the annotation of NP biosynthetic pathways.
Nevertheless, several biosynthetic enzymes that catalyze amazing and unique reactions
continue to challenge functional prediction and remain hidden from (meta)genomic se-
quence data [208,209]. The development of next-generation sequencing (NGS) and the
emergence of potent computational tools are starting to expose previously unrecognized
taxa, ecological niches, and “biosynthetic dark matter”, connecting phenotype and chemo-
type and revealing a variety of NP that are diverse and chemically distinct in previously
unstudied microorganisms [50,84,210,211].

5.1. Genome Sequencing Techniques

From 1977 to 2022, four generations of sequencing technologies have been developed,
offering many advantages over classical Sanger sequencing, referred to as the first gener-
ation sequencing (FGS), where the terminator ddNTP is tagged with specific fluorescent
dyes [212].

Since their inception in 2004, the second (SGS) and third generation sequencing (TGS)
technologies, commonly referred to as next-generation sequencing (NGS) technologies,
have undergone tremendous development with a rise in sequencing speed and a decrease
in sequencing cost. There are several different types of sequencing platforms for SGS,
starting with GS FLX by 454 Life Sciences/Roche Diagnostics (2004), Genome Analyzer
(2006), HiSeq, MiSeq, and NextSeq (2015) by Illumina, Inc., SOLiD by ABI (2007), and
Ion Torrent by Life Technologies (2010), which differ in sequencing chemistries that lead
to differences in throughput, read length, genome coverage, error rate, cost, and run
time [213]. Two main steps common to all SGS involve template preparation (nucleic
acid extraction, library preparation, and amplification), followed by sequencing, which
comprises two main approaches: (1) sequencing by synthesis (SBS) and (2) sequencing
by hybridization and ligation (SHL). Three main classes of sequencing chemistry in SBS
include pyrosequencing, sequencing by reversible termination (Illumina), and sequencing
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by detection of hydrogen ions (Ion Torrent) [214]. The main limitation of pyrosequencing,
based on the detection of pyrophosphate (PPi) during DNA synthesis, was inaccurate
sequencing of homopolymers since the addition of more than five identical nucleotides
could not be accurately detected [215]. Illumina sequencing platforms allow paired-end
sequencing as DNA fragments of the libraries are subjected to clonal amplification by
bridge PCR [216], followed by sequencing using reversible terminator (RT) nucleotides.
Here, the homopolymer sequencing error is overcome by adding a single base at a time with
the terminator removed from the previous base. In addition to resulting in high readings
and coverage compared to the sequencing system at one end, sequencing a DNA fragment
at both ends also greatly facilitates the detection of genomic rearrangements, repetitive
sequences, gene fusions, and novel transcripts. In addition, Illumina platforms provide
superior alignment across DNA regions containing repetitive sequences and generate longer
contigs for de novo sequencing by filling gaps in the consensus sequence [214]. Sequencing
by detection of hydrogen ions (Ion Torrent sequencing, pH-mediated sequencing, silicon
sequencing, or semiconductor sequencing) is another SBS method based on the detection
of hydrogen ions that are released during DNA polymerization and applicable for whole-
genome sequencing and RNA-Seq. Both Illumina and Ion Torrent platforms provide
alternative approaches for studying RNA at the sequence level, have similar capacities,
and may be used to examine different transcriptional phenomena through careful selection
of the software alignment [217]. The SOLiD (Support Oligonucleotide Ligation Detection)
sequencing platform, which is based on ligation (using DNA ligase) rather than synthesis,
although it does not produce long-reading sequences that make assembly more challenging,
has remained competitive based on cost per base.

Third generation sequencing aimed to overcome two main SGS limitations: short read
length and consequently the need for bioinfomatic pipelines for the sequence assembly,
as well as PCR bias as a result of clonal amplification (bridge PCR amplicifation) for the
development of a detectable base incorporation signal [214]. The platforms available for
the TGS are HelicosTM Genetic Analysis System by SeqLL, LLC; SMRT Sequencing by
Pacific Biosciences; and Nanopore sequencing by Oxford Nanopore, as single-molecule real-
time technology platforms; as well as Complete Genomics by Beijing Genomics Institute
(based on SHL); and GnuBIO by BioRad, a droplet-based DNA sequencing platform that
utilizes microfluidic and emulsion technology to perform complex, multiplexed reactions
in droplets (2014; Bio-Rad Laboratories, Inc.).

5.2. High Throughput Next-Generation Sequencing (HT/NGS)

HT/NGS technologies can generate massive amounts of data, given their higher se-
quencing efficiency and lower cost per base. The rough division of HT includes genome
sequencing and transcriptome sequencing (RNA-seq). In both cases„ the reading may be
single or paired ends, while reads that are generated from both ends of longer fragmented
DNA or RNA significantly increase the sequence accuracy. Genome sequencing involves
the sequencing of fragmented genomic DNA and the assembly of the entire genome from
the read sequence. Transcriptome sequencing (RNA-Seq) provides insight into the pres-
ence and quantity of RNA sequences in a biological sample in real time by continuously
analyzing changes in the cell transcriptome. In addition to information on gene expression
at the genome-scale level, it is also possible to measure the expression levels of a smaller
subset of genes using this technique [214]. RNA-seq has made an outstanding contribution
to elucidating various aspects of RNA biology, including single cell gene expression, trans-
lation (the translatome), RNA structure (the structurome), as well as spatial transcriptomics
(spatialomics) [215], by becoming the method of choice for transcriptome analysis.

Nanopore-based technologies as fourth-generation sequencing drivers enable HT
and provide the longest read lengths, from 500 bp to the current record of 2.3 Mb, with
common genomic libraries ranging from 10 to 30 kb [218]. Silicon nanotechnology has
really pushed genomics forward, facilitating complex workflows. Thus, nanopores can be
integrated into a chip, paving the way for mini-portable DNA sequencing devices. The
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long-reading sequence, unlike conventional HTS, where the length of the reading sequence
is limited to a few hundred nucleotides or less, is rapidly gaining popularity and is likely
to completely prevail over other sequencing technologies [219]. Here, each reading can
be several thousand nucleotides long, which has several advantages over short-reading
technologies. Long-reading technology allows the omission of assembly to obtain whole
genome sequences for prokaryotes, while complex splice junction detection procedures can
be skipped for eukaryotic transcripts. Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) are the two key competitors driving innovation in this technology.

The quality of the genome sequence is crucial for secondary metabolite biosynthetic
gene cluster (smBGC) identification, significantly facilitating functional gene annotation.
Due to the fact that the majority of BGCs consist of core biosynthetic genes, mostly larger
than 5 kb and usually containing repetitive sequences, it is obvious that an inaccurate
genome sequence often results in frameshift errors during the prediction of coding regions
within the BGCs [220]. On the example of the genome sequences of Streptomyces clavuligerus
ATCC 27064, a Gram-positive bacterium with industrial and clinical significance that pro-
duces β-lactam class antibiotics (the β-lactamase inhibitor clavulanic acid), it is notable that
the sequence qualities significantly affect BGC identification. Thus, for the first time, Strepto-
myces clavuligerus ATCC 27064 genome sequence was obtained by random shotgun Sanger
sequencing using ABI 3700 [221], followed by a draft genome sequence of S. clavuligerus
NRRL 3585 (ATCC 27064) obtained by a hybrid approach that involved Sanger sequenc-
ing and Roche/454 pyrosequencing [222]; and then a high-quality S. clavuligerus genome
sequence was obtained using PacBio long-reading sequencing and Illumina short-read
sequencing methods [223]. The latter genome sequencing of S. clavuligerus, which filled
all sequence gaps and corrected errors from the previous contig sequences, resulted in a
6.75-Mbp linear chromosome and a 1.8-Mbp mega-plasmid, 7163 newly annotated genes,
and 58 smBGCs. Among these, 30 and 28 BGCs were found from the chromosome and
the plasmid, respectively, in comparison with 23 and 25 BGCs previously identified by
Song et al. [222]. Recently published high-quality genome sequences of 22 Streptomyces
species and eight strains of Streptomyces venezuelae confirmed that assembling by a hybrid
strategy, using genome sequencing methods for long reading and short reading, facilitated
the detection of new secondary metabolites and the identification of smBGCs [224].

5.3. Dereplication Using Genomics Methods

In the past decade, plenty of new platforms and databases have been developed to
computationally mine genetic data and its links to known NPs. The use of this approach
is exponentially increasing for the discovery of new natural entities. The dereplication
strategy using genomic methods derives from the fact that the structures of the enzymes that
are involved in the production of NP are amazingly conserved, and so their encoding genes
are organized in clusters, known as biosynthetic gene clusters (BGC). These BGCs can be
defined as a group of genes in close genomic proximity that together promote the synthesis
of NP through a complex route of enzymatic reactions and regulatory switches [225]. Such
clusters encode not only proteins that synthesize the final products (backbone enzymes),
but also genes encoding potentially regulatory elements such as transcription factors (TFs),
transport proteins, resistance factors, or those involved in precursor production [226].

The most studied compound classes are polyketides (PK), biosynthesized by polyke-
tide synthases (PKS), and non-ribosomally synthesized peptides (NRP), produced by non-
ribosomal peptide synthetases (NRPS), along with ribosomally and post-translationally
modified peptides (RiPPs). In particular, NRPS enzymes are very good candidates for
genome mining approaches because of their good co-linearity of the modular domain
organization with their corresponding biosynthetic products and their high degree of con-
servation, although there are exceptions to that co-linearity rule [52]. SANDPUMA, an
improved tool when compared with prediCAT for the dereplication of NRP chemical space,
is available as an open source, and it has been integrated into antiSMASH [227]. NRPminer
is a modification-tolerant instrument for NRP discovery integrating large (meta)genomic
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and MS datasets [228]. Nerpa is a software tool for the high-throughput discovery of novel
BGCs that produce NRPS [229].

CycloBranch is an open access cross-platform, available at http://ms.biomed.cas.
cz/cyclobranch/ (accessed on 22 March 2023) [230], for annotating spectra of linear,
cyclic, branched, and branch-cyclic nonribosomal peptides and polyketide siderophores.
MassSpecBlocks converts chemical structures, searchable in public databases such as Pub-
Chem, ChemSpider, ChEBI, NP Atlas, COCONUT, and Norine, available in SMILES format,
into sequences of building blocks and proteinogenic amino acids. Moreover, it allows the
construction of custom sequence and building block databases to annotate mass spectra in
CycloBranch software [231].

The iSNAP platform uses an in silico algorithm for screening tandem MS data as an
accurate tool for fast dereplication and profiling of large NRPS families [232].

These biosynthetic pathways can be computationally predicted and prioritized by
genome mining, which allows not only the prediction of the structure of the NP based on
genetic information prior to its isolation and structural elucidation by spectral data but
also their possible functional and chemical interactions. The main premise of the in silico
mining method is the use of multiple sequences that encode the reference enzymes (“core
biosynthetic genes”) for the identification of homologues in the genome sequences, allowing
the selection of the most interesting biotechnology-based microorganisms. In overcoming
the limitations of culturing microbial isolates, improved sequencing and analysis methods
have broadened our understanding of the microbial world.

The availability of published genome sequences of a huge number of microorganisms,
along with the development of a plethora of computational tools, has revolutionized
strategies to detect and prioritize the search for new NPs using gene clusters. Thus, the
evolution of sequencing technologies from the classic chain termination method to fourth-
generation sequencing resulted in 19,865 complete (7425) and permanent draft (12,440)
genomes, as well as 40,583 complete and 23,313 incomplete genome sequencing projects
in 2020. Although these numbers were significantly lower in 2021 due to the COVID-
19 pandemic, they saw a renewed increase in 2023 (https://gold.jgi.doe.gov/statistics
(accessed on 22 March 2023)) [233].

Genome mining (GM) comprises computational methods for the automatic detection
and annotation of BGCs from genomic data. Moreover, as identification of biosynthetic path-
ways of NP leads to elucidation of their possible functional and chemical interactions [52],
machine learning (ML) genome mining approaches deeply contribute to understanding
NP chemical diversity through analysis of microbial and plant genome architecture and
structure, or their “BGC genomic language” [29]. Thus, through identification and BGC
analysis, GM has become a key technology to exploit and explore NP diversity [234].

GNPS can be linked to genomic information to aid genome-driven NP discovery, with the
discovery of columbamides demonstrating this approach [175,235,236]. Streptomyces tendae VI-
TAKN isolated from the southern coast of India was dereplicated using integrated genome
mining coupled with MS/MS analysis and in silico GNPS tools. The sequence similarity
networks of the detected BGCs from this strain against the MIBiG database and 3365 BGCs
predicted by antiSMASH analysis of publicly available complete Streptomyces genomes
were generated through the BiG-SCAPE-CORASON platform to evaluate its biosynthetic
novelty. The identification of cyclic dipeptides (2,5-diketopiperazines, DKPs), which are
known to possess quorum sensing inhibitory (QSI) activity, was also achieved [237].

Natrix is an open-source bioinformatics workflow available on GitHub (https://
github.com/MW55/Natrix (accessed on 22 March 2023)) or as a Docker container on Dock-
erHub (https://hub.docker.com/r/mw55/natrix (accessed on 22 March 2023)) and written
using Snakemake for preprocessing raw amplicon sequencing data. This comprises a
comprehensive method, from quality assessment, read assembly, dereplication, chimera de-
tection, split-sample merging, sequence representative assignment (OTUs or ASVs), to the
taxonomic assignment of sequence representatives. Snakemake guarantees reproducibility,

http://ms.biomed.cas.cz/cyclobranch/
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and Conda (https://docs.conda.io/en/latest/ (accessed on 22 March 2023)) controls the
applied programs [238].

The Paired Omics Data Platform is a community-led effort to systematically document
links between metabolome and (meta)genome data, thereby assisting in the identification
of NP biosynthetic origins and metabolite structures [239].

NP are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in
the production of one or a family of chemically related metabolites. Walker and Clardy in
2021 developed a machine learning bioinformatics method for predicting biological activity
for genes [240]. Bioactivity prediction can also be achieved through a multiplex genome
editing system using a cytosine base editor (CBE) [241].

5.3.1. Retrieving the Microbial/Environmental DNA

Metagenomics is the process of extracting microbial genomes directly from environ-
mental samples, regardless of sample type or microbial abundance [242]. Metagenomics, as
a culture-independent method, utilizes the sequencing revolution to overcome many of the
conventional barriers to NP discovery by profiling microbial communities and accessing
the biosynthetic capacity of the environmental metabiome. The progression of readily
available bioinformatic pipelines has enabled large quantities of BGCs to be mined from
environmental microorganisms without having to culture them and test their bioactivity. In
addition to identifying new metabolites, metagenomic sequence data assembly led to the
identification of the “metabolically talented” endosymbiontic genus Entotheonella, which is
expressed in almost all bioactive molecules that have been isolated from its host, the marine
sponge Theonella swinhoei [243]. Culture-independent methods have substantially con-
tributed to our understanding of global microbial diversity. The first large-scale initiative to
recover nearly 8000 bacterial and archaeal metagenome-assembled genomes (MAGs) from
over 1500 publicly available metagenomes, named the Uncultivated Bacteria and Archaea
(UBA) data set, showed the tremendous importance of developing algorithms for the con-
struction of entire genomes from environmental samples and substantially expanded the
tree of life [244]. Single-amplified genomes (SAGs) and MAGs are two examples of genome
analysis from uncultivated species that have recently contributed to our understanding of
microorganisms and additionally contribute to the elucidation of the tree of life.

Furthermore, advances in sequencing technologies have expanded the availability
of genomes and metagenomes, significantly facilitating community-wide microbial pan-
genome research [245]. In keeping with the current trend, studies on individual microbial
genomes and their genotype/chemotype/phenotype relations have increasingly moved
from individuals to environmental microbial communities directed towards predicting
multiple entities simultaneously. The pangenome concept is based on the fact that “the
sequence of a single genome does not reflect the entire genetic variability of a bacterial
species” [246]. It can be applied in either a reverse approach with the aim of capturing the
genomic diversity of the group of interest or a forward-thinking approach with the aim
of estimating the minimum number of genome sequences required to capture the entire
genomic repertoire of the group, which should not be less than five [247]. Pangenome
analysis may be useful for redefining the taxonomic and pathogenic positions, as already
demonstrated on species of the genus Shigella and Escherichia coli strains [248], but also as a
promising tool for identifying novel secondary metabolites through microbial communality
profiling. Mohite et al. reported in 2019 the (pan)genome mining of 2627 enterobacterial
genomes, which resulted in the detection of 8604 BCGs, corresponding to 212 BGC families,
of which only 20 were associated with previously characterized BGCs from the MIBIG
database as siderophores, antibiotics, and genotoxins [249].

5.3.2. Steps and Tools in Genome Mining

The simplified genome mining flowchart involves: (1) the identification of previously
uncharacterized/unknown NPs of BGCs within the genomes of sequenced organisms;
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(2) the sequence analysis of the enzymes encoded in these clusters, including the regulatory
elements; and (3) the experimental identification of these NPs (Figure 4).
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of the NP structure.

Genome mining techniques have advanced tremendously in recent years, providing
more profound insights into gene expression profiling or an organism’s genetic signature.
Since dereplication entails comparing experimental data from new extracts with data from
established NPs, computational methodologies based on databases are needed to improve
the chances of efficiently isolating new molecules [250].

Starting from the assumption that elucidation of the genome architecture and structure,
in which NP synthetic pathways are encoded, is a central approach to understanding NP
chemistry and biology [54], genome annotation (according to Prihoda et al. [29]) represents:

1. The first step of genome mining and BGC identification. Through an in silico
approach, this process leads to the identification and description of the functional elements
and function of the predicted gene product in the genome sequence. Pfam is a database of
protein families, each represented by Multiple Sequence Alignments (MSA) and Hidden
Markov Models (HMMs) (Pfam-A), that is widely used to analyze novel genomes and
metagenomes and recently enriched by a set of unannotated, computationally generated
MSA called Pfam-B (http://pfam.xfam.org/ (accessed on 22 March 2023)) [251].

The Metashot/prok-quality tool, part of the metashot collection of analysis workflow,
is available under a GPL3 license on GitHub. It is a container-enabled Nextflow pipeline for
quality assessment and genome dereplication, producing reports that are compliant with
the Minimum Information about a Metagenome-Assembled Genome (MIMAG) standard
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and can run out-of-the-box on any platform that supports Nextflow, Docker, or Singularity,
including computing clusters or batch infrastructures in the cloud [252].

BiosyntheticSPAdes is the first automated pipeline for BGC reconstruction, taking
advantage of assembly graphs rather than individual contigs, which greatly improves the
reconstruction of BGCs from genomic and metagenomics data sets. It is a step towards
enabling high-throughput NP discovery by coupling metagenomics and MS data using
tools such as NRPquest. BiosyntheticSPAdes allow for the recovery of long BGCs and can
be extended to other types of long and highly repetitive genes, such as 16S rRNA genes or
insecticide toxins. However, this tool only has predefined options for the most important
classes of BGCs (NRPS, PKSs, and their fusions) [253].

2. The second step implies the identification of the BGCs, which is supported by numer-
ous tools that provide linking of genome mining data with known secondary metabolites
and by plenty of available reviews that describe those tools and their applications.

Several bioinformatics tools have been developed or updated, especially in the
last two years, such as: antiSMASH (Antibiotics and Secondary Metabolite Analy-
sis Shell), a widely used microbial (and also fungal and plant) GM platform for sm-
BGCs analysis (https://antismash.secondarymetabolites.org/ (accessed on 22 March
2023)) [254], initially released in 2011 [255]; PRISM (http://prism.adapsyn.com (ac-
cessed on 22 March 2023)) [256]; BAGEL for visualization of prokaryotic BGCs included
in the biosynthesis of RiPPs and (unmodified) bacteriocins (http://bagel4.molgenrug.
nl/ (accessed on 22 March 2023)) [257]; and RiPPER specialized for RiPP gene clusters,
which is inconvenient for bioinformatic predictions due to the lack of common biosyn-
thetic characteristics (https://hub. docker.com/r/streptomyces/ripdock/ (accessed on
22 March 2023)) [258]. Some of the GM platforms are specialized for targets, such as ARTS
(Antibiotics Resistant Target Seeker), which provides efficient GM for antibiotics by rapidly
linking housekeeping and known resistance genes to BGC proximity, duplication, and HGT
(http://arts.ziemertlab.com (accessed on 22 March 2023)) [259], or TOUCAN, specialized
for fungal BGC discovery (http://github.com/bioinfoUQAM/TOUCAN (accessed on
22 March 2023)) [260].

Regarding antiSMASH, one of the most popular genome mining pipelines designed
to analyze individual genomes, the recently updated antiSMASH database version 3 (https:
//antismash-db.secondarymetabolites.org/ (accessed on 22 March 2023)) aims to provide
interactive access and cross-genome search functionality based on antiSMASH results for
archaeal, bacterial, and fungal genomes [261]. antiSMASH 3 is an upgraded version of this
web server tool integrated with the ClusterFinder algorithm, which enables the detection of
putative gene clusters of unknown types and also presents a novel dereplication difference
of the ClusterBlast module, which identifies similarities of the identified clusters to any
of the clusters with known end products [262]. A crucial role in the BGC analysis has
also been played by IMG-ABC (Integrated Microbial Genomes Atlas of Biosynthetic Gene
Clusters), the database of predicted BGCs combined with experimentally verified BGCs
(https://img.jgi.doe.gov/cgi-bin/abc/main.cgi (accessed on 22 March 2023)) [263], and the
MIBiG repository (Minimum Information about a Biosynthetic Gene Cluster) as a central
reference database for BGCs of known function (https://mibig.secondarymetabolites.org/
(accessed on 22 March 2023)) [193]. Major improvements to the schema, data, and online
repository itself, along with extensive manual data curation, are included in MIBiG 2.0
to enhance the annotator quality of the BGC collection and annotations in compliance.
Furthermore, it offers user-friendly direct link-outs to chemical structure repositories and
new capabilities, including query searches and a statistics page [193].

The vast majority of sequence data in databases was created by advanced high-throughput
sequencing, leading to large-scale comparative analysis of homologous BGCs sharing simi-
lar domains (termed gene cluster families (GCFs)), the development of BGC/GCF analysis
pipelines, and platforms such as BiG-SCAPE (Biosynthetic Gene Similarity Clustering
and Prospecting Engine), a software package for grouping GCFs based on the sequence
similarity networks of the BGCs. Moreover, the BIG-SCAPE/CORASON workflow enabled
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the exploration of gene cluster diversity linked to enzyme phylogenies (https://bigscape-
corason.secondarymetabolites.org (accessed on 22 March 2023)) [234], BiG-SLICE was de-
signed to cluster massive numbers of BGCs (https://github.com/medema-group/bigslice
(accessed on 22 March 2023)) [264], and the BiG-FAM database was devised for perform-
ing multi-criterion GCF searches as well as GCF annotation of user-supplied BGCs from
antiSMASH output (https://bigfam.bioinformatics.nl (accessed on 8 April 2022)) [265].

3. The third step starts once the BGC information is obtained by the former GM
platforms and implies the prediction of the NP structures. Many of the mentioned available
tools allow the prediction of NP structures from not only precursor peptides (PP) but also
the analysis of (RiPP) BGCs, such as the DeepRiPP three-stage modular platform that
combines both genomic and metabolomic information to automate detection of RiPPs and
their associated BGCs [266], RiPPMiner for deciphering chemical structures of RiPPs by
GM (http://202.54.226.242/~priyesh/rippminer2/new_predictions/index.php (accessed
on 22 March 2023)) [267], and RODEO (Rapid ORF Description and Evaluation Online)
(http://ripp.rodeo/index.html (accessed on 22 March 2023)) [268]. Gene clusters can
also be linked to NP structures using MS data. Strategies based on absence/presence
correlations of molecules and gene clusters across strains also allow the connection of MS
data to BGCs.

RiPPquest was the first GM tool to automate both BGC prediction and connection
with MS/MS by combining the metabolomic and genome-guided mining tools for the
identification of microbial RiPPs [269]. However, this tool was limited to the discovery of
lanthipeptides from small databases and could only search for a predefined set of post-
translational modifications (PTM). With the aim of solving these limitations, the same team
developed the software MetaMiner, which allows matching genomically predicted peptides
with their possible modifications to the monomers inferred from MS data. MetaMiner is
integrated into GNPS and is also available as part of the NP discovery tool package [270].
Other softwares were released last year, such as CycloNovo for the detection of cyclic
peptides (https://github.com/bbehsaz/cyclonovo (accessed on 22 March 2023)) [271] and
DeepRiPP, which combines both genomic and metabolomic information to automate the
detection of RiPPs and their associated BGCs [53]. The first full-fledged software that
automates that process and also introduces a new scoring function was the NPLinker,
which also introduces new scoring functions [27] and links genomic and metabolomic
data [272].

Pep2Path, freely available at http://pep2path.sourceforge.net/ (accessed on 22 March 2023),
paved the way towards high-throughput discovery of novel PNPs by introducing auto-
mated MS-guided genome mining for the identification of nonribosomally and ribosomally
synthesized bioactive peptides. This tool fully automates the peptidogenomics method
through the rapid Bayesian probabilistic matching of MS to their corresponding biosyn-
thetic gene clusters [273].

5.3.3. Chemoinformatics Approaches for Dereplication Using BGCs Diversity

The combination of interdisciplinary and integrative strategies significantly facilitates
and accelerates the process of dereplication. In this way, the different GM strategies can be
grouped into the following approaches to mining genomes for NP (Figure 5).

1. The phylogenetic-based GM approach, obtained by comparative genomics, is very
useful in predicting the partial or entire molecule structure of a molecule from the gene clus-
ter if another highly similar gene cluster has been linked to a characterized molecule [274].
Gene cluster similarity can be used to find NPs with similar functional groups or structures
to known compounds, providing a starting point for structural elucidation. When a NP
structure is obtained before the annotation of the corresponding genome, genomic data
may be used to confirm that the spectrometrically-derived assignments are accurate, or at
least compatible with biosynthetic logic [48].
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TQMD is available at https://bitbucket.org/phylogeno/tqmd (accessed on 22 March 2023),
and it is an optimized tool (comparable with dRep and Assembly-Dereplicator) to derepli-
cate prokaryotic genomes at higher taxonomic levels (phylum/class) and lower taxonomic
levels (species/strain) [275].

2. The target-based GM approach is directed to finding specific genes/gene clusters,
such as polyketide synthase (PKS) gene clusters [276], putative resistance genes (self-
resistance gene mining) [259], or BGC-associated transporter genes that can predict the
specialized structure and function of metabolites, such as siderophore activity [277]. The
selection of a pathway-specific enzyme as an excellent strategy in the search for BGCs
was recently demonstrated by the example of Diels-Alderase-directed genome mining
through the analysis of publicly available genomic and metagenomic data of the phyllum
Actinobacteria. Using Diels-Alderase (AbyU/AbsU/AbmU) homologues, five complete
and 12 partial new abyssomicin BGCs, as well as 23 new potential abyssomicin BGCs,
were identified. In addition, this unexpected prevalence of abyssomicin BGC in terrestrial
habitats also provided important data on the evolution of abyssomicin BGCs, driven by
horizontal gene transfer (HGT), as well as their environmental distribution (mostly in soil
and plants) [278]. Indeed, genome and metagenome mining may be used as a preliminary
tool in bioprospection, directing the investigations of new NP towards particular taxa
and/or unexplored habitats.

Furthermore, the identification of regulatory elements of the gene cluster, such as pro-
moters and translation initiation signals, may be needed for the purposes of heterologous
expression of NP BGCs. Through advanced microbial engineering, synthetic biology seeks
to create innovative genetic circuits with practical applications in NP research.

Thus, Johns et al. [279] used metagenome mining to create a large-scale data set of
169 bacterial and 15 archaeal complete and annotated genomes for constructing a metage-
nomic regulatory sequence library, which notably expanded the repertoire of prokaryotic
regulatory sequences that can be used to construct synthetic circuits, with numerous ap-
plications in biotechnology and medicine [280]. Moreover, regulatory sequences with
pre-defined host specificities were used to demonstrate programmable species-selective

https://bitbucket.org/phylogeno/tqmd
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gene expression that produces distinct and diverse output patterns in different hosts. Such
species-selective gene circuits (SsGC) with specified host expression profiles provide a
framework to engineer synthetic gene circuits with unique cross-species functionality [279].

3. The behavior-based GM approach is inspired by microbial chemical communication,
quorum sensing (QS), and wide-spectrum intra- and interspecies interactions, including
symbiosis between microbes but also microbes with animals, plants, and fungi [281]. From
a NP discovery perspective, symbiotic models can shed light on aspects of the evolution of
biosynthetic gene clusters (BGCs) and the manner in which BGCs may contribute to the
adaptive fitness of their hosts. It was shown that octocoral-associated species/strains of the
genus Pseudoalteromonas have amazing genetic potential as a promising source of NP with
antimicrobial activity by combining GM, MS/MS molecular networking, and molecular
networking with in vitro microbial interactions [282]. However, a significant step forward
was made in a recent study that combined pangenome and sequence similarity networks to
elucidate the predominant NP that mediates bacterial-nematode-insect interactions within
an ecological niche [283]. BGCs from the two Gram-negative genera Xenorhabdus and
Photorhabdus living in mutual symbiosis with entomopathogenic nematodes have been
identified. Analysis of 45 strains that represent almost all known strains of these two genera
resulted in the identification of 1000 BGCs from 176 families, which provide insight into
prevalent bacterial NP that form the functional basis of this tripartite relationship, such as
proteasome inhibitors, virulent factors against insects, and insect immunosuppressants.

4. The habitat-based GM approach provides insights on sampling in different habitats,
such as extreme habitats and genome profiling of extremophile organisms [284,285], but
also on spatiotemporal metabolic network modeling in complex habitats [286].

Integrative strategies with an interdisciplinary approach successfully unite the dif-
ferent biological and chemical methods in new drug discovery. Trivella and de Felicio
postulated in 2018 a tripod for modern drug discovery based on: (1) genome mining;
(2) molecular cross-linking based on MS; and (3) growth conditions to induce secondary
metabolism as a central strategy for the discovery of new bioactive substances [287]. The im-
portance of an integrative approach that combines genome mining, comparative genomics,
and functional genetics/genomics is perhaps best explained by the successful identifi-
cation of novel biosynthetic gene clusters that produce antimicrobial NP, as confirmed
in Pantoea agglomerans strain B025670 [274]. Another example of a successful combined
approach aiming to facilitate the identification of molecules from complex microbial and
plant extracts was a recently established MS-guided genome mining protocol based on GM
and MN. In this method, defined as MS-guided genome mining, the main components
are previously designated (using MN), and the structurally related new candidates are
associated with genome sequence annotations (using GM) [113].

Despite progress in data sharing policies and practices, restrictions are still often
placed on the open and unconditional use of various data types, especially genomic data,
even after they have received official approval for release in the public domain or in public
databases. Such practices are usually against the terms and conditions (i.e., open access
mandate) set by the funding agencies, which support research for the benefit of the scientific
community and society. Publicly available data should be treated as open data, a shared
resource with unrestricted use for analysis, interpretation, and publication, thus promoting
the development of new technologies and the advancement of science [288].

6. Natural Products Determination of Relative and Absolute Configurations

A key and challenging aspect of NP structure elucidation is the determination of
their stereochemistry [30,289]. Knowledge of the molecular shape and spatial features is
important to understand the chemical and biological properties of molecules with stere-
ogenic centers. In the pharmaceutical industry, having pure NP or MNP with their 3D
structure elucidated is mandatory, as impurities and/or different stereoisomers can have
totally adverse effects on human health, such as in the case of Thalidomide®. Numerous
strategies have been developed to overcome limitations, including the scarce amount of
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sample availability, the presence of stereogenic centers, multiple chiral quaternary atoms, or
the chirality of flexible systems [290,291]. Depending on the specific physical and chemical
characteristics of NP, their stereochemical features can be studied by X-ray diffraction,
chiroptical methods, chemical derivatization, NMR-based methods, computational NMR
methods, and genomics (Figure 6).
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6.1. X-ray Diffraction

Single-crystal X-ray diffraction (SC-XRD) is a valuable method for the structural
elucidation of NP. It provides information on molecules at the atomic level and can be
used to determine their absolute configuration. The main limitation of this technique is the
requirement of high-quality single crystals for the analysis, which may be complicated to
obtain. Many NP are not crystalline, and, usually, the scarce amounts of substance isolated
may interfere with the quality of crystals for X-ray diffraction.

In recent years, two methods have been described that allow X-ray diffraction without
the need for crystalline compounds.

The first is the crystalline sponge method, based on the use of a crystalline molecular
flask (CMF), which, in its solid state, possesses high tolerance to structural deformation
without loss of crystallinity. These materials can absorb the target molecule and arrange
it in a highly organized manner, allowing X-ray analysis of the sample. Therefore, the
X-ray technique can be extended to non-crystalline NP and to NP that has been isolated in
very small amounts since the crystallographic analysis can be performed at the nanogram–
microgram scale. This method was described for the first time in 2013 [292], and since then,
it has proven to be suitable for the determination of the absolute configuration of small
molecules, including those containing chiral quaternary carbons [293]. It has been used
to determine the absolute configuration of NP belonging to a variety of skeletons, such
as elatenyne, which presents a pseudo-meso core structure [294], or the sesquiterpenes
cycloelatanenes A and B, which are epimers and possess five chiral quaternary atoms [295].
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The chemical properties of the crystalline molecular flask (CMF) are essential to the ap-
plication of this method, as the Metal−Organic Framework (MOF) used by Fujita and
co-workers decomposes in contact with Lewis basic or protic substituents [292]. Therefore,
great research efforts are currently being carried out focused on the development of new
CMFs to optimize the method and expand the array of solvents and compounds that can
be used [296–298].

The second is the X-ray Powder Diffraction method, which allows NP structure
determination from powder diffraction data (SDPD). Although X-ray powder diffraction
can only differentiate diastereomers, this method has been used to establish the absolute
configuration of acidic or basic compounds by the formation of salts with chiral counter
ions. The crystal structure of the salts is analyzed by X-ray powder diffraction, and the
absolute configuration can be deduced from the known chirality of the counter ion [299]. So
far, this methodology has proven useful with the acids (R)-flurbiprofen and (S)-flurbiprofen,
using quinine and (R)-2-phenylpropylamine as counter ions. In addition, the absolute
configuration of the basic compounds aminoglutethimide and lamivudine was determined
using (R)-camphor-10-sulfonic acid as a counter ion. The preparation of the crystalline
salts has been reported on the milligram and microgram scales. Thus, this methodology
could be suitable for the scarce amounts of NP commonly isolated from natural sources.
One limitation of this method is the need for compounds that can form salts with suitable
counter ions and the need for good-quality crystals of the obtained salts.

6.2. Chiroptical Spectroscopy

The interaction of a chiral NP with circularly polarized light determines its absolute
configuration. Chiroptical methods are non-destructive and do not require crystallization
or the use of chiral auxiliaries. Currently, there are several chiroptical methods based on
circular dichroism (CD) used for the determination of the absolute configuration of NP.

Electronic circular dichroism (ECD) is defined as the differential absorption of circu-
larly polarized radiation in the UV-Vis region of the electromagnetic spectrum. Therefore,
it deals with CDs that originated from molecular electronic transitions. ECD has been
extensively used for the assignment of AC and conformational studies of NP. Its main
advantage is its high sensitivity, since a good spectrum can be obtained on the sub µg scale.
Even though originally this method could not be used for NP lacking an UV/Vis active
chromophore and was not entirely accurate for flexible molecules, the use of chiral probes
has expanded its use. Chiroptical probes are achiral moieties that can be attached to a
chiral compound. Ideally, these probes should introduce rigidity and chromophores that
enhance the chiroptical response in the ECD spectrum. For example, biphenyl chiroptical
probes have been recently used for the determination of the absolute configuration of col-
letochlorin A and agropyrenol, two flexible phytotoxins isolated from the fungal pathogens
Colletotrichum higginsianum and Ascochyta agropyrina, respectively [300–302].

The interpretation of the spectrum obtained by ECD can be done by comparison with
a reference spectrum; by correlation with similar compounds; using empirical rules; or
using the exciton chirality approach. All these approaches are limited because they focus
on a few transitions of a specific chromophore and depend on a collection of experimental
data.

During the last decades, the development of computer technology and Quantum
Mechanical (QM) calculations has had a tremendous impact on the use of chiroptical
analysis for AC determination. At present, there are numerous examples of the use of
QM calculations for the determination of the absolute configuration of complex natural
products [303,304].

Time-dependent density functional calculations (TDDFT) allow, with relatively low
computational calculations, a reasonable accuracy in the prediction of excitation energies
and rotational strengths, whereas coupled cluster calculations are limited to small molecules
due to their higher computational calculations. It is important to point out that flexible
molecules may have several conformers that contribute to the optical properties of a chiral
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compound and must be considered. Therefore, it is very important to define the possible
conformers before conducting quantum-mechanical calculations.

6.3. Low Temperature Atomic Force Microscopy (AFM)

In 2018, Schreiner et al. assigned the absolute configuration of the two tetramantane
enantiomers by direct visual inspection using low-temperature atomic force microscopy
(AFM) with a CO-functionalized tip [305]. The experimental results were supported by
computational studies.

The absolute configuration was assigned by differentiation of the two enantiomers on
a Cu (III) surface and by visualization of characteristic hydrogens. The molecules were de-
posited onto the Cu surface at a temperature of −258.15 ◦C; therefore, this procedure could
be suitable for volatile compounds. In addition, there is no need for chromophores for par-
ticular atoms or functional groups. This work indicates that microscopic techniques could
become standard tools for absolute configuration (AC) determination in the future [306].

6.4. Relative Configuration by NMR

NMR spectroscopy is the first-choice method to study the relative configuration of NP.
It is a non-destructive technique that allows, without chemical transformation, to determine
most of the relative configurations of complex NP with several chiral atoms.

The assignment of stable conformations and relative configurations of a chiral NP
without any chemical transformation can be deduced from the study of nuclear Overhauser
effects (NOEs), two- and three-bond 1H–1H (3JH,H), 13C–13C (2,3JC,H) coupling constants,
and also from the study of residual dipolar couplings (RDCs). The interpretation of
homonuclear coupling constants (3JH,H) and NOEs should be enough to establish the
relative configuration of cyclic or rigid NP that have a limited number of conformers, and
this method has been widely used.

Linear or cyclic flexible NP may present more difficulties for the assessment of stable
conformers and the assignment of relative configuration. In 1999, Murata et al. described
a method to assign the relative configuration of stereogenic methine carbons based on
the analysis of 1H–1H 3JH,H, 13C–1H 2,3JC,H coupling constants, and nuclear Overhauser
effect (NOE or ROE) interactions [307]. This method, also called J-based configurational
analysis, can be applied to acyclic compounds and to larger, flexible macrocyclic structures.
For flexible systems, the relative conformation of adjacent stereogenic centers can be rep-
resented by six staggered rotamers. For each configuration, the chiral methine protons
have an anti-orientation in one rotamer and gauche-type orientations in the other two
rotamers. If this system adopts one main conformer (>85% of the total), analysis of the
homonuclear and heteronuclear coupling constants of the methine protons can be useful for
the determination of the relative configuration of those carbons. This method can also be
applied to 1,3-methines and even to 1,4-methines if the methylene protons are well resolved.
This method has been extensively used for the establishment of the relative configuration
of many NP [308,309]. This method relies on the ability to determine 1H-1H and 1H-13C
coupling constants. Vicinal 1H–1H couplings can often be measured from 1H NMR spectra,
and for overlapped resonances, selective pulse sequences such as 1D TOCSY may eliminate
overlapping signals and allow direct measurement of 1H–1H coupling constants. On the
other hand, the measurement of long-range 1H–13C couplings has been very challenging
due to the low naturally abundant 13C nucleus and the difficulties in accurately measuring
small 1H-13C coupling constants (<2.3 Hz). In the last few years, a variety of 2D NMR
experiments have been described for determining nJCH coupling constants, for example,
HECADE; HSQC-TOCSY; J-HMBC; EXSIDE; selEXSIDE; S3-HMBC hetero; HMBC-IPAP; or
HSQMBC [310]. Still, there is not a general method that can overcome all the limitations
associated with these coupling constants. For example, HMQC-TOCSY and HSQC-TOCSY
only work for protonated carbons, and HMBC and HSQMBC experiments deliver com-
plex multiplets due to simultaneous JH,H phase modulation, which makes the analysis of
coupling constants very complicated [311]. Therefore, this is an area of active research,
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with new experiments being added periodically, such as the LR-selHSQMBC experiment,
which allows for the observation of weak heteronuclear correlations that can be potentially
missing in standard HMBC/HSQMBC experiments [312].

The relative configuration of NP that present specific features or functional groups
can be deduced from the observation of 1H and 13C NMR chemical shifts, and through the
years of investigation and observation of chemical shifts of different types of compounds,
several NMR empirical rules have been established: The relative configurations of aryl-
glycerols can be determined by the 1H NMR chemical shift differences of the diastereotopic
methylene protons [313]. In addition, the 3JH,H values allow the assignment of threo and
erythro configurations of polyacetylene glycosides [314]; the relative configuration of 1,3-
methyl-branched carbon chains can be determined by study of ∆δ of relevant methylene
protons [315]; and the relative configuration of fatty acid butanolides isolated from an
octocoral of the genus Pterogorgia was established by the study of the 13C NMR chemical
shifts of the carbons on the 3-alkyl-4-hydroxy-5-methyl-2(5H)-dihydrofuranone ring, a
γ-lactone motif ubiquitous in many bioactive natural products [316]. The geometry of
vicinal vinyl dihalides can be established by the observation of the 1H and 13C chemical
shifts of C-1 [317].

6.5. Absolute Configuration by NMR

NMR spectroscopy can be useful to determine the absolute configuration of NP by
derivatization with chiral anisotropic reagents or using chiral solvating agents (CSA)
through non-covalent interactions associated with the chiral NP of study.

6.5.1. Derivatization with Chiral Anisotropic Reagents

This methodology has been extensively used for the study of NPs containing secondary
alcohols, α-substituted primary amines, and α-substituted carboxylic acids.

Two enantiomers of a chiral anisotropic reagent are used to derivatize, separately,
the NP under study to obtain two epimers whose chemical shifts around the stereogenic
center will be affected by the aryl group of the anisotropic substituent. Protons that reside
where the magnetic lines of force for the induced magnetic field oppose the applied field
experience a shielding effect and are shifted upfield, while protons situated where the
induced magnetic field complements the applied field are deshielded and shifted downfield.
Conformational studies and differences in those chemical shifts allow the establishment of
the absolute configuration of the stereogenic center.

In 1973, Mosher et al. described the empirical correlation between the configuration of
a chiral alcohol and the NMR chemical shifts of the diastereomeric products that result from
reactions with specific chiral esterification reagents containing an aryl substituent [318,319].
Later, the correlation between 1H NMR chemical shifts of the ester derivatives of the R-
and S-α-methoxy-α-trifluoromethylphenylacetic acids (MTPAs) was elaborated into the
advanced Mosher’s method [320,321]. Therefore, this method has been extensively applied
to determine the absolute configuration of NP containing secondary hydroxyl groups by
derivatization and 1H NMR analysis. This method is also applicable to stereogenic methine
carbons bearing a primary amine group. There are certain NP where the method cannot be
reliable, for example, NPs in which steric factors produce conformations that deviate from
the proposed model or heavy signal overlapping of the protons around the stereogenic
center of study.

Besides MTPA, there are other chiral anisotropic agents that can be applied to the mod-
ified Mosher’s method, such as methoxyphenylacetic acid (MPA), 9-anthrylmethoxyacetic
acid (9-AMA), and phenylglycine methyl ester (PGME). PGME can be applied to elucidate
the configuration of methine carbons that are α-positioned to carboxylic acids [322,323]. The
use of methoxyphenylacetic acid (MPA) as a chiral auxiliary improves the ∆δ acquisition of
1H NMR at low temperatures or by adding barium salts to the NMR tube. 9-AMA allows
the use of this methodology for the determination of the absolute configuration of NP by
derivatization of primary alcohols, and the use of MPA or 9-MPA in combination with low



Mar. Drugs 2023, 21, 308 37 of 66

temperatures or the use of barium salts allows the determination of secondary alcohols
or primary amines from just one single derivative [324]. Moreover, the methodology of
preparation of the derivatives has evolved to reduce or eliminate steps of purification and
simplify the experimental process. For instance, the use of auxiliary reagents attached
to polymeric supports has allowed the preparation process to be carried out in the NMR
tubing [325,326].

More recently, this methodology has been extended to the determination of the abso-
lute configuration of polyfunctional NP possessing two or more close chiral atoms. For
these NP, the analysis of the ∆δRS takes into consideration the crossed effects between
auxiliaries of the derivatives as well as conformational studies of each derivative to predict
the shielding signs of the ∆δRS of the protons of the molecule [327]. In addition, besides 1H
NMR experiments, 13C NMR of the derivatives has been analyzed to open this methodology
to substrates without protons directly bonded to an asymmetrical carbon atom [328].

6.5.2. Chiral Solvating Agents (CSA)

The non-covalent interactions between CSA and the compound under study can
be used to assign the absolute configuration of NP. Usually, this methodology implies a
mixture of the CSA and the NP in the NMR tube.

Separately, two enantiomers of a CSA are used to form stable diastereomeric complexes
with the chiral compound. Usually, a CSA possesses a strong anisotropic group that should
produce selective shielding effects around the stereogenic center of study. The study of the
stable conformation of those resulting CSA-compound complexes and the ∆δ of selected
atoms allows the establishment of the absolute configuration of a specific chiral center.

There are numerous examples of CSA used to determine the absolute configuration
of NP. For example, 2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE) was initially used to es-
tablish the absolute configuration of the γ-methyl butenolide moiety of the NP isolated
from annonaceous acetogenins [329]. Later, this methodology has been used to determine
the absolute configuration of γ-methyl butenolide diterpenoids of sponges [330], fura-
nocembranolides of octocorals [331], and even to establish the absolute configuration of
sesquiterpenes isolated from red algae possessing a γ-butenolide or δ-lactone moieties [332].

The use of a particular CSA is restricted to compounds containing specific functional
groups; therefore, there is a continuous search for new CSAs that can be useful to determine
the absolute configuration of compounds containing diverse functional groups. More
recently, new protocols have been published to determine the absolute configuration of
compounds that contain acids, esters, hydroxy acids, and amino acids that interact with
CSA [333–336].

6.5.3. Absolute Configuration of Amino Acids by Marfey’s Derivatization Method

The resolution of enantiomers can be achieved by indirect approaches: each enan-
tiomer reacts with a chiral derivatizing reagent (CDR) to produce a pair of diastereomers
that can be easily separated by chromatography without the requirement of chiral support.
For this approach to be useful, there are certain conditions: the enantiomer molecule and
the chiral derivatizing reagent (CDR) must possess compatible and easily derivatizable
functional groups; the reaction should be rapid; and the CDR must possess a chromophore
to enhance the chromatographic detection.

In 1984, Marfey published a method for the determination of L- and D-amino acids by
chiral derivatization with 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (L-FDAA) [337].
Briefly, L-FDAA contains a reactive fluorine atom that is used for the reaction with a
mixture of L- and D-amino acids, and the resulting diastereoisomers can be separated and
analyzed by reverse-phase HPLC, where very distinct retention times are obtained for
both diastereoisomers. This method has become very popular for the establishment of
the absolute configuration of many natural metabolites containing amino acids, especially
peptides [338–340]. The first step of Marfey’s method is the acid hydrolysis of the NP
to obtain the amino acid residues. Then, the hydrolysate is derivatized under alkaline
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conditions with L-FDAA to obtain a mixture of L-FDAA derivatives of the constitutive
amino acids of the peptide that can additionally be separated and analyzed by HPLC. The
retention time of each derivatized amino acid can be compared to that of the derivatized
L- and D-amino acid standards. Marfey’s derivatives of D- and L-amino acids can be
identified by co-injection of standard derivatized D- and L-amino acids.

Since the publication of the original method, there have been some improvements:
new chiral reagents have been prepared by the reaction of 1,5-difluoro-2,4-dinitro benzene
(DFDNB) with Val–NH2, Phe–NH2, and Pro–NH2, amino acids with carboxyl groups or
amino acid amides, among others [341], and the “advanced Marfey’s method”, which
combines the Marfey’s method with FAB and ESI/MS [342,343].

One of the drawbacks of Marfey’s method is the analysis of amino acids that possess
a second chiral center at Cβ, such as isoleucine (Ile), due to the lack of chromatographic
resolution of all possible stereoisomers, L-Ile, L-allo-Ile, and D-Ile, D-allo-Ile. The “C3
Marfey’s method”, which uses a C3 stationary phase instead of the most common C18 for
HPLC analysis at a temperature of 50 ◦C and a ternary gradient, has proven to achieve the
separation of these epimers [344]. More recently, another approach using tandem HPLC-
SPE-NMR based on the differentiated NMR data of these epimers have been described [345].

6.5.4. Quantum Chemical Calculations of NMR Parameters

In the last decades, computational chemistry methods using quantum mechanics
and molecular mechanics theories combined with statistical approaches have evolved
rapidly [33,304]. Consequently, theoretical calculation models for the determination of
NMR parameters have allowed comparison between experimental and computed data,
becoming a powerful tool to aid in the structural and stereochemical determination of
natural molecules. These methods have been successfully used to characterize and revise
the structures of natural and synthetic products [33].

In general terms, the procedure to determine the most likely structure among several
stereoisomers involves a conformational search to explore possible conformers of candidate
molecules, followed by geometry optimization, then calculation of NMR properties, molec-
ular energy calculations, Boltzmann averaging, and finally comparison of the calculated
values with those obtained from experiments [32]. In this last step, it is crucial to choose
an appropriate statistical method. Among them, it is worth mentioning the CP3 [346],
DP4 [347], DP4+ [348], and J-DP4 [349] probability methods.

The CP3 and DP4 methods were introduced by Goodman and coworkers. The CP3
parameter improved results obtained by other statistical descriptors such as R2, mean
absolute error (MAE), or corrected mean absolute error (CMAE). Thus, for a pair of di-
astereoisomers, NMR chemical shift calculation, combined with analysis using CP3, was an
effective way to assign two experimental spectra to two possible structures [346]. However,
the method had limited application in NP research. This problem was solved with the DP4
method, designed to identify stereochemistry among multiple candidate stereostructures
with one single set of experimental NMR chemical shifts available [347]. The DP4 has been
extensively used in the structure elucidation of many complex NPs, such as the complete
reassignment of the alkaloid echivulgarine, obtained from pollen of Echium vulgare [350].
Other examples are the determination of the unsolved absolute stereochemistry of cycloci-
namide A, a 14-membered cyclic peptide with four unrelated stereocenters for application
of the DP4 protocol to a simplified synthetic peptide core [351], or the stereochemical
determination of marilzafurollenes A–D and 12-acetoxy-marilzafurenyne, five halogenated
C15 tetrahydrofuranyl-acetogenins isolated from Laurencia marilzae. In this case, despite the
methodology allowed to connect remote stereocenters, the presence of halogens, frequent
in marine metabolites, interfered with reliable calculations [352] and lacked accuracy in
flexible molecules [353]. DP4+ was introduced in late 2015 by Sarotti and coworkers [348]
as an improvement of DP4, with the inclusion of a geometrical optimization step and the
use of a higher level of theory for NMR calculations. The absolute configuration of the
novel estrogenic α-pyrone, arthrifuranone A, was established by combining the Mosher’s
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method and gauge-including atomic orbital NMR chemical shift calculations, followed by
DP4+ analysis [354]. Despite DP4+’s better performance, it requires a higher computational
cost, as do other improved methods such as DP4.2 [355] and DiCE (diastereomeric in silico
chiral elucidation) [356]. With the aim of obtaining better results than the original DP4
method and reducing the associated computational costs, the J-DP4 method was developed
by incorporating vicinal coupling constants (3JH,H) into the analysis in three possible ways:
direct (dJ-DP4), indirect (iJ-DP4), and dJ/iJ-DP4. [349] These potent and sophisticated tools
remain rapidly evolving, becoming progressively determinant in the structure elucidation
of large and flexible molecules [357].

6.6. Relative and Absolute Configuration Aided by Genomics

As we showed in Section 5.3, the biosynthetic information found in the genome of or-
ganisms can be used to predict metabolite molecular frameworks. Furthermore, knowledge
of the stereospecificity of biosynthetic enzymes can be used to predict the configuration of
NP. This approach can be especially useful for the assignment of the full absolute configura-
tion of complex NP with multiple stereogenic centers, which would require a combination
of approaches including X-ray diffraction, 2D NMR analysis, the preparation of chiral
derivatives, partial degradation, or analogue and asymmetric synthesis.

A good example of structural complexity is macrolides, microbial metabolites charac-
terized by a large lactone ring to which can be attached one or more sugars and multiple
hydroxyl or alkyl groups. These NP present a high number of stereogenic centers and
high flexibility, which, together with the presence of isolated stereocenters, complicate the
assignment of their absolute configurations. Macrolides are produced by type I polyketide
synthases, and many of the enzymes that mediate their synthesis are highly stereospecific;
therefore, it is feasible to use the knowledge of the enzyme stereospecificity to predict the
absolute configuration of macrolides.

In recent years, the absolute configuration of several macrolides has been described by
the analysis of genomics and a combination of NMR data analysis and/or quantum me-
chanical calculations. For example, the absolute configurations of polyketides niphimycins
C−E, isolated from a marine-derived Streptomyces sp., have been proposed from the anal-
ysis of the ketoreductase and enoylreductase domains for hydroxy- and methyl-bearing
stereocenters [358]. In addition, in 2018, the full absolute stereostructure of neaumycin B
was proposed [359]. More recently, the absolute configurations of the formicolides were
proposed based on the application of ketoreductase amino acid sequence analysis and
quantum mechanical calculations [360].

7. Computer Assisted Structure Elucidation and Related NP Databases

Computer assisted structure elucidation (CASE) has been a well-established system
in the chemical community for more than 50 years. The elucidation of the structure of
NP is, by its nature, a very complex process in which any available information that can
be used to elucidate the structure of an unknown compound cannot be ignored. Despite
great advances in spectroscopic techniques, there have been in recent years a surprisingly
high number of cases in which a previously reported NP structure was later shown to
be incorrect. Therefore, CASE systems have a high relevance by integrating all existing
computational methods, for example, structure generation by structure assembly [361–364]
and reduction [365], stochastic structure generators [366], combinatorial structure genera-
tion with restraints [367,368], convergent structure generation [369,370], fuzzy structure
generation [371], chemical graph generators [42], logic engines [372], combinatorial brute
force [373–376], databases of 13C NMR chemical shifts and fragments [377,378], genetic
algorithms [379,380], simulated annealing [381], evolutionary algorithms [382], expert
systems [44,383], and expert systems with Density Functional Theory (DFT) [43–45]. In
Figure 7, the main achievements of CASE systems are highlighted [39–41,43,384,385].
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Figure 7. Timeline illustrating the major advances in CASE systems, period 1969–2023. The boxes
represent the three phases highlighted in the development of the CASE. Phase I between 1969 and
1994 is represented in light blue, and Phase II between 1991 and 2016 is in blue. Phase III between
2016 and 2023 is in purple.

The evolution of the CASE systems in the past fifty years clearly highlights three
approaches, shown in Figure 7. Phase I between 1969 and 1994 is represented in light blue,
Phase II between 1991 and 2016 in blue, and Phase III between 2016 and 2023 in purple.
The CASE system was built considering the following data: 1D NMR/IR/MS, 2D NMR,
and 2D NMR/DFT/NOESY/ROESY estimation for phases I, II, and III, respectively.

In general, CASE systems produce a set of possible structures that satisfy the ex-
perimental spectroscopic data and the CASE knowledge. Depending on the number of
restrictions imposed by the CASE system, the output file size can vary widely, from a
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small number of structures to hundreds of thousands. To select the most likely structure,
CASE systems use the prediction of 1D NMR chemical shifts (e.g., 13C, 1H, 15N, 19F, and
31P) by empirical methods. To hierarchize the structures, a comparison between predicted
and experimental 13C chemical shifts is performed by CASE systems. Only recently has
the DFT-based quantum mechanics (QM) approach has achieved greater accuracy when
compared to empirical methods. For example, Lodewyk et al. [386] reported the revision of
the structure of aquatolide (1), a humulane-derived sesquiterpenoid lactone, based on DFT
calculations of 13C chemical shifts and subsequently confirmed by X-ray crystallography as
having the revised structure (2) (Figure 8).
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In this study [386], DFT-based 13C chemical shift calculations clearly showed the
validity of structure (2), the revised one, the corrected mean absolute deviation (CMAD)
(2) = 1.37 ppm, and CMAD (1) = 7.23 ppm. Despite all the merits of DFT-based chemical
shift prediction, current empirical methods remain indispensable for efficiently generating
and selecting the most likely structure or structures in large CASE output files, mainly due
to their high speed and reasonable accuracy [39]. The power of CASE is that it generates all
possible structures and then performs a fast selection of the most likely structures based
on efficient chemical shift calculations. The critical function of CASE is its capability to
generate structures that cannot be performed by DFT calculations. While CASE programs’
chemical shift predictions are generally reasonable, their accuracy is highly dependent
on the structures being analyzed and can vary significantly between structures. Thus,
the accuracy of CASE chemical shift predictions of aquatolide was as low as 6 ppm,
which justified the application of DFT computations for the shortlist of CASE-generated
structures for aquatolite [44]. The revision of the aquatolide structure is a perfect example
of the superior accuracy of chemical shift predictions by DFT calculations as well as the
synergistic power of combining CASE and DFT methods. The original revision of the
aquatolide structure took more than a year [386], while the CASE-DFT revision took just a
few hours [44]. Therefore, in the CASE system such as ACD/SE, the use of DFT calculations
of 13C and 1H chemical shifts was proposed in a final phase for the short list of structures
generated by their program to support a more conclusive choice about the most probable
structure and to determine relative stereochemistry, if needed [39,44,45].

Very promising approaches using machine learning and deep learning methodolo-
gies were also explored to quickly and accurately predict NMR chemical shifts using
large databases of high diversity [387,388]. Jonas et al. [387] reported the use of deep
neural networks for predicting NMR shifts, achieving a precision of 1.43 ppm mol MAE
for 13C and 0.28 ppm mol MAE for 1H shifts using the data available in nmrshiftdb2
(https://nmrshiftdb.nmr.uni-koeln.de/ (accessed on 18 January 2023)) as input data. Even
better performance is achieved with the approach developed by Kwon et al. [388] using
an improved method based on enhanced molecular graph representation and a mes-
sage passing neural network (MPNN) for 13C and 1H NMR chemical shift prediction,
achieving MAE values of 1.36 and 0.22 ppm, respectively. Although CASE remains a
challenge [4,40,41,43,389,390], there is a clear synergistic interaction between new NMR
techniques, computational chemistry methods, and the evolution of CASE systems. In
this way, the new CASE protocols incorporate advances in experimental and theoretical

https://nmrshiftdb.nmr.uni-koeln.de/
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techniques such as powerful new correlation experiments (e.g., LR-HSQMBC (Long-Range
Heteronuclear Single-Quantum Multiple Bond Correlation), HSQMBC–TOCSY (Heteronu-
clear Single-Quantum Multiple Bond Correlation–Total Correlation Spectroscopy), new
and orthogonal techniques (e.g., RDC (Residual Dipolar Couplings) data, RCSA (Residual
Chemical Shift Anisotropy) data), DFT prediction of chemical shifts followed by DP4 prob-
abilities calculation using vibrational effects, and deep learning, a new powerful approach
to computational science based on neural networks).

8. Chemoinformatics Tools to Facilitate Drug-Lead Discovery

Statistics concerning novel drug approvals by the Food and Drug Administration
(FDA) during 1969–2020 showed a very diverse behavior since the peak in 1996, with
47 new molecular entities (NMEs)/year, and the minimum (after 1996) of 11 NMEs/year
in 2002. Figure 9 updates the global number of new FDA approvals with the number of
NP and NP derivative approvals until 2020, highlighting the contribution of MNP and
computer-aided drug design (CADD) methodologies that were reported in the review by
Pereira and Aires-de-Sousa [250].
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During the COVID-19 pandemic, the FDA approved 40 NMEs in 2020; this is the
third highest number of approved compounds obtained since 1969, falling only slightly
short of the value obtained of 42 in 2018 and the value of 47 in 1996 (Figure 9). In the last
decade, 2011–2020, there was a clear upward trend in NMEs/year, with a 10-year average
of 31.4 NMEs when compared to the previous decade, 2001–2010, with a 10-year average
of 18.4 NMEs. In the case of NP and NP-derivatives, there was a constant behavior over
time, with a 10-year average of 4.2 and 3.8 for both the decades 2001–2010 and 2011–2020,
respectively (Figure 9). Curiously, the high point for NP and NP derivatives was in 1996
(with 12 approved drugs), and the 1990s decade was also the most successful for CADD-
driven drugs, with eight approved drugs. However, more than half of the total approvals
of MNP and MNP derivatives occurred in the 21st century (eight out of eleven approved
drugs) (Figure 9).
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New approaches are needed to overcome the perceived disadvantages of MNP when
compared with synthetic drugs, such as the difficulty in access and supply that made the
investigation of MNP only begin in the 1980s [3,250,394]. Marine-based drug development
is a time-consuming and costly endeavor that takes between 17 years (e.g., trabectedin,
Yondelis®) and 24 years (e.g., halichondrin, Halaven®; dolastatin, ADCetris®), with an
average of 23 years from the MNP discovery to marketing [3]. To overcome these difficulties,
CADD approaches can be used to guide decisions concerning the in vivo and in vitro
testing of isolated NP and extracts, to assist in the design of bioactive NP derivatives, and
to virtually screen databases of known or proposed NP. Thus, it is important to understand
where in chemical structural space biologically relevant compounds are found and the
relationship between these two spaces (i.e., chemical-biological).

The regions of the chemical space surrounding NP are recognized as promising for the
development of new drug leads, according to a comprehensive analysis covering the period
between 1981 and September 2019. The NP scaffolds, which include unaltered NP, NP
derivatives, and NP mimetics and/or contain an NP pharmacophore, represent 45% of all
approved small-molecule drugs [395]. A statistical analysis of the structural classification
of NP performed by Waldmann and co-workers [396] showed that more than half of all
NP have the right size (i.e., a van der Waals volume between 300 and 800 Å3) to serve as
a starting point from hit to lead discovery. Likewise, in a different subset of PubChem,
Pereira et al. [397] have also reported a correlation between active compounds and three- or
four-ring compounds with a van der Waals volume between 300 and 800 Å3. A NP-likeness
score to measure the similarity between a molecule and the structural space covered by
NP was developed by Ertl et al. [398] and incorporated in SENECA, an open-source CASE
platform [399].

More recently, two complementary works were reported by Shang et al. [400] that
analyzed the differences between terrestrial natural products (TNP) and MNP using chemoin-
formatics methods and Pereira et al. [401], which performed machine learning (ML) mod-
eling to predict the terrestrial and marine origins of NP. Both studies reported a trend for
MNP to have more halogens (especially bromine) and fewer oxygen-containing groups than
TNP [400,401]. However, different conclusions were obtained about the size of the rings
in these two studies [400,401]. The first study [400] reported that larger rings, especially
8- to 10-membered rings, were generally present in MNP, unlike the second study [401] that
reported that 5-membered rings were more relevant in the discrimination of the MNP. A clear
separation between the chemical space represented by MNP when compared to TNP when
exploring ML techniques was observed [401]. A Generative Topographic Mapping (GTM)
for chemical data visualization was also developed [401] in order to map the terrestrial and
marine origin of the NP landscape for the external test set (a data set not used to build the
model, comprising 3236 MNP and 3258 TNP) for the StreptomeDB 2.0 database (2877 unique
microbial NP produced by the genus Streptomyces, an actinobacterium) [402] when comparing
with the Pye data set (5486 unique microbial and MNP) [58,403–406] (Figure 10).
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Figure 10. GTM terrestrial and marine origin of NP landscape for: (a) the external test set; (b) the
StreptomeDB 2.0 database; and (c) the Pye data set [401]. Dark blue, or 0, represents the TNP class,
and red, or 1, represents the MNP class.
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Interestingly, an overlap between the chemical space of microbial NP and MNP can be
seen in Figure 10, but also taking into account the predictions with ML models carried out
in Pereira’s work, which predict MNP at more than 64% for the StreptomeDB 2.0 database
and for the Pye data set. There are undoubtedly three key criteria for designing compound
libraries to model protein function: diversity, drug-likeness, and biological relevance. The
unique structural features of NP were explored using various approaches to making NP-
derived fragment databases for fragment-based drug discovery. Generating and making
these fragments publicly available were also explored. To identify structurally diverse
compounds that share the same biological activity space, the concept of scaffold hopping
was developed in 1999 [407]. Initial application of virtual screening of scaffold hopping
for NP [408] and then replacement of fragments in active compounds was reported more
recently [409,410]. Other approaches, such as pseudo-NP [411,412], privileged scaffolds
[413], and fragment libraries of NP, were also explored. The pseudo-NP libraries generated
by Waldmann and co-workers [404] using diversity-oriented synthesis (DOS) such as
ring-opening, ring-expansion, ring-contraction, or ring-rearrangement/fusion (Figure 11)
occupy areas of chemical space not covered by NP and biology-oriented synthesis (BIOS)
libraries.
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Figure 11. Demonstration of NP fragment connectivity such as (i) edge fusion and (ii) spiro fusion
to guide the synthesis and design of pseudo-NP. These connectivity patterns are also found in MNP,
and representative examples are shown. Black dots denote connectivity points. Individual fragments
were indicated in blue or green [404].

The chemical space of the pseudo-NP was compared by the authors with the NP in the
ChEMBL database, the set of approved drugs by the DrugBank, and the BIOS libraries. It
was observed that pseudo-NP has a narrower distribution that only covers a portion of the
chemical space sparsely occupied by NP [404].

Lai et al. reported a method using a deep learning approach to predict indications and
identify privileged scaffolds of NP for drug design. Entropy-based information metrics were
used to identify the privileged scaffolds for each indication, and a Privileged Scaffold Dataset
(PSD) of NP was built. In Figure 12, some examples are shown [403–406].

A large fragment library of NP with almost 206,000 fragments was recently reported by
Chávez-Hernández et al. [406] from a drug-like subset of the COCONUT database using a
Statistical-Based Database Fingerprint approach. COCONUT is available on Zenodo and
comprises structures and some annotations for over 400,000 non-redundant NP [10,13]. The
fragment library of NP was made freely available, and in Figure 13, some representative
examples of this library are shown.
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Recently, several works have been published using QSAR modeling to predict bio-
logical activities [409,410,414–423] or estimate absorption, distribution, metabolism, ex-
cretion, and toxicity (ADMET) properties [424,425] of NP, with special emphasis on MNP.
The GDB4c database is a useful resource for similarity and pharmacophore searching
based on known NPs and is available for download at www.gdb.unibe.ch (accessed on
18 January 2023). An angle-based macrocycle conformational sampling method was ex-
plored by Wang et al. [411] using crystal structures of 37 polyketides with 9−22 rotatable
bonds in the macrocyclic ring since macrocyclic polyketides are pharmacologically impor-
tant NP. This method was able to reproduce the crystal structure of polyketides’ aglycone
backbone within an RMSD of 0.50 Å for 31 out of 37 polyketides [411].

Two QSAR studies were developed from a seaweed metabolite database of marine
algal secondary metabolites (http://www.swmd.co.in (accessed on 18 January 2023)) for
predicting anticancer activity [412] against six different cancer cell lines (e.g., MCF-7,
human breast adenocarcinoma; A431, human epithelial carcinoma; HeLa, human cervical
adenocarcinoma; HT-29, human colon adenocarcinoma grade II; P388, murine leukemia;
A549, human lung epithelial adenocarcinoma), antiamnestic and antidepressant activities
against sigma receptors [413] using 157 [412] and 11,517 MNP [413], respectively. In the
last study, 15 MNP were proposed as powerful sigma receptor ligands; four of them were
already known in the literature for their antiproliferative and cytotoxic effects against A549
and HT29 cancer cell lines, which are two typical cancer cell lines characterized by sigma
receptor overexpression [413]. In addition to anticancer activity, to discover new inhibitors
against the human colon carcinoma HCT116 cell line, two QSAR studies using molecular
and nuclear magnetic resonance (NMR) descriptors from 50 crude extracts, 55 fractions,
and five pure compounds obtained from actinomycetes isolated from marine sediments
collected off the Madeira Archipelago) were recently reported through exploration of ML
techniques [426]. In this work, the two developed approaches (A, through molecular
structures, and B, through NMR spectra) allowed the development of a complementary
strategy to predict new anticancer MNP [426]. Approach B enabled the prioritization of
the isolation, purification, and structural elucidation of crude extracts, fractions, and pure
compounds. Therefore, pure compounds that were elucidated were subjected to model A,
and the compounds predicted to be most active against the HCT116 cell line were evaluated
experimentally [426]. Other QSAR studies reported anticancer activity models against
protein targets such as heme oxygenase 1 (HO-1) [407] and p38α [408] from 62 molecules
with HO-1 IC50 value ≤ 10 µM [407] and 45 brominated-based natural tyrosine synthetic
derivatives [408] (a library that was synthetized based on the secondary metabolite isolated
from the sponge Iotrochota purpurea, itampolin A), respectively. The virtual screening of new
potentially HO-1 inhibitors of imidazole-based NP from three different databases, MNP
(http://docking.umh.es/ (accessed on 18 January 2023)), ZINC NP, and Super Natural II,
using the best QSAR model, was also reported by Floresta et al. [407].

Antifouling activity was QSAR modeled for the settlement of Mytilus galloprovincialis
larvae [409,410]. Almeida et al. built two QSAR models using multilinear regression
methods with 19 and 16 nature-inspired (thio)xanthone [409] and chalcone [410] deriva-
tives, respectively, and also used in vitro antifouling activity assays for the settlement of
Mytilus galloprovincialis larvae. Recently, Gaudencio and Pereira, 2022 performed a virtual
screening antifouling campaign of 14,492 MNP from Encinar’s website and 14 MNP that
are currently in the clinical pipeline. In the CADD structure-based approach, the 125 MNP
that were selected by the QSAR approach were used in molecular docking experiments
against the acetylcholinesterase enzyme. Sixteen MNP were proposed as the most promis-
ing marine drug-like leads as antifouling agents, e.g., macrocyclic lactams, macrocyclic
alkaloids, indole, and pyridine derivatives [414].

QSAR modeling for the anticancer activity against HCT116 [426] and the antibac-
terial activity against methicillin-resistant Staphylococcus aureus (MRSA) infection [415]
was also performed. The authors reported that the developed MRSA QSAR regression
model, approach A, is the largest study ever performed with regard both to the number of
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compounds involved and to the number of structural families involved in the modeling of
the antibacterial activity against MRSA [415–418]. The NMR QSAR classification model,
approach B, was also extended to a high number of samples containing additional 45 pure
compounds, and therefore the overall predictability accuracies were improved, [415] when
compared with those obtained in their previous work [426].

The QSAR methodology was explored in the discovery of new antimalarial drugs
of marine origin [419,420]. Aswathy et al. [419] studied 42 natural-based derivatives of
thiaplakortone-A, which were found in the Australian marine sponge Plakortis lita and
were active against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.
The authors reported several QSAR models, including both 2D and 3D QSAR, and the
results were combined with simulated interactions with the P. falciparum calcium-dependent
protein kinase 1 protein to design and screen new virtual molecules [419].

In another approach, quantitative relationships were established between thermody-
namics/electronic properties calculated by DFT methods and the antimalarial activity of
14 sponge metabolites–bromopyrrole alkaloid derivatives [420]. The linear regression mod-
els were developed using molecular descriptors such as entropy, dipole moment, molecular
polarizability, energy of the highest occupied molecular orbital (HOMO), softness, and
electrophilicity index [420]. The HOMO also performed remarkably well in discriminating
the overall biological activity of MNP and microbial NP [421].

The investigation of MNP as a key resource for the discovery of drugs to miti-
gate the COVID-19 pandemic is a developing field. Several CADD approaches were
explored [422,423,427–429]. Gaudêncio and Pereira [424] reported a CADD ligand- and
structure-based strategy for predicting marine SARS-CoV-2 main protease (Mpro) inhibitors.
A list of virtual screening hits comprising fifteen MNP was assented to by the authors on
the basis of established limits, such as confidence value (3), probability of being active
against SARS-CoV-2 in the best QSAR model, prediction of the affinity between the Mpro

of the selected MNP through molecular docking, and ADMET predictions. Five MNP,
benzo [f]pyrano [4,3-b]chromene, notoamide I, emindole SB beta-mannoside, and two
bromoindole derivatives were proposed as the most promising marine drug-like leads as
SARS-CoV-2 Mpro inhibitors [424].

In Figure 14, the interaction profiles of the best-docked poses for the two bromoindole
lead-like SARS-CoV-2 Mpro inhibitors are shown [424].
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Figure 14. Interaction profiles of the best-docked poses for the two bromoindole hits in molecular
docking to the Mpro enzyme (Protein Data Bank ID: 6LU7) [424].

Molecular docking has been the major structure-based methodology to predict affinities
to macromolecular targets, interpret binding modes, and assist in the design of drug leads.
Several recent publications illustrate the application of this method to MNP [424,425,430], and
some representative examples are described herein.
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Liu et al. [430] reported the design of a synthetic marine-based library comprising
19 tasiamide B (an acyclic peptide containing a statine-like unit and several amino acid
residues) derivatives as inhibitors of BACE1, a potential therapeutic target for Alzheimer’s
disease. The core structure and a free carboxylic acid group were identified as relevant
for inhibitory activity by SAR analysis and docking simulation. vonRanke et al. [425]
reported SAR, molecular docking, and molecular dynamic studies of ten diterpenes with
anti-HIV activity that were previously isolated from marine algae and octocorals. In the
SAR analysis, descriptors such as cLogP (octanol–water partition coefficient), PSA (polar
surface area), LUMO (lowest unoccupied molecular orbital energy), and GAPHOMO-LUMO
(energy difference between the HOMO and LUMO) were identified, associating the anti-
HIV activity of five diterpenes with possible action on the reverse transcriptase allosteric
site. Further investigation by molecular docking identified that only dolabelladienetriol
(Figure 15) interacted at the allosteric site. The high affinity of dolabelladienetriol for the
allosteric site was confirmed by molecular dynamics analyses, which showed a hydrogen
bond to Lys101 and a high hydrophobic interaction with the residues Leu100, Tyr318,
Try188, Trp229, Val106, and Leu324. Based on molecular dynamics analysis, the authors
suggested that dolabelladienetriol might interfere with the viral RNA binding to HIV-1 RT
by inducing a conformational change of the enzyme.
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Figure 15. Chemical structure of dolabelladienetriol isolated from marine algae Dictyota pfaffii.
Docking studies performed for cytotoxic NP isolated from Red Sea cucumber Holothuria spinifera
revealed their binding interactions with the active site of the SET protein, an inhibitor of protein
phosphatase 2A (PP2A), which could explain its cytotoxic activity [431].

9. Conclusions

It is of utmost importance to develop integrated, effective methods based on the use of
a wide range of multidisciplinary technologies that enable researchers to prioritize natural
resource (NR) samples, rapid dereplication, and evaluation of preferred cultivation and
extraction conditions. Moving forward with rapid and efficient isolation, the discovery of
novel specialized metabolites, and the 3D structural elucidation of the metabolite’s chemical
scaffolds while minimizing the waste of resources on rediscovering known compounds,
more and more chemists are using cutting-edge analytical and computational methods to
organize and mine data from enormous data sets to accelerate the discovery of bioactive
NP. MN was able to successfully organize extensive collections of MS/MS data as well
as sample metadata in a format that was simple to understand for spectral similarity
networks. The process of carrying out NP dereplication and metabolic profiling was
significantly influenced by the online platform GNPS (Global Natural Products Social
Molecular Networking), especially when combined with MN.

The post-genomics era and the development of bioinformatic tools have also had a
significant impact on NP research, speeding up the process of dereplication and structure
elucidation of secondary metabolites.

Starting from the premise that the NR are integrated into their habitat, one should
select the best approach and techniques to investigate the NR of interest based on an
integrated approach to NP identification using the several technologies that are currently
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available. The unexpected diversity of the NR metabolome outweighs the complexity of
the genome by a considerable margin. We are just starting to put together the necessary
computational and experimental tools to understand the metabolome in comparable detail.
We anticipate that in the future it will be possible to comprehend the precise connections
between NR, their genome and metabolites, absolute structure elucidation, bioactivity,
MoA, and immune response.

The diversity and pervasiveness of NR have been seen in new ways by modern tech-
nology, but these tools have primarily produced outlines that provide insufficient insight
into organisms’ functions or community dynamics. Advancing knowledge about organ-
isms’ functions or community dynamics could revolutionize our perception of the world
and spark information and innovations in a variety of fields, including the environment,
biotechnology, and health. Discovering the relationship between microbiome and NP
structure would advance science towards increasing the NP chemical space and solving
NR supply shortages for further biotechnological development such as pre-clinical and
clinical trials or moving forward from proof of concept in industrial development.
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