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Abstract
Motivation: The recognition of mentions of species names in text is a critically important task for biomedical text mining. While deep learning-
based methods have made great advances in many named entity recognition tasks, results for species name recognition remain poor. We hy-
pothesize that this is primarily due to the lack of appropriate corpora.

Results: We introduce the S1000 corpus, a comprehensive manual re-annotation and extension of the S800 corpus. We demonstrate that
S1000 makes highly accurate recognition of species names possible (F-score¼93.1%), both for deep learning and dictionary-based methods.

Availability and implementation: All resources introduced in this study are available under open licenses from https://jensenlab.org/resources/
s1000/. The webpage contains links to a Zenodo project and three GitHub repositories associated with the study.

1 Introduction

Over the last two decades of research into information extrac-
tion from biomedical scientific publications, progress has pri-
marily been driven by advances in two key areas: manually
annotated corpora, and deep-learning (DL) methodology.
Corpora of sufficient size, coverage, and annotation quality
have been established to allow the development of methods
capable of highly accurate recognition of many key entity
types, including simple chemicals (Krallinger et al. 2015, Li
et al. 2016), genes and proteins (Kim et al. 2004, Smith et al.
2008), diseases (Do�gan et al. 2014), and anatomical entities
(Pyysalo and Ananiadou 2014). Using these resources, state-
of-the-art methods approach or exceed 90% precision or
recall at the recognition of mentions of the names of these en-
tities (Lee et al. 2020, Lewis et al. 2020, Shin et al. 2020).
However, strikingly, these same methods fail to achieve com-
parable levels of performance in the recognition of species
names, a highly relevant target for biomedical information ex-
traction that one would intuitively expect to be comparatively
simple to recognize due to the regularity of the binomial no-
menclature and the availability of high-coverage resources of
species names (Schoch et al. 2020).

Most recent efforts targeting species name recognition fo-
cus on two manually annotated resources: the LINNAEUS
corpus (Gerner et al. 2010) and the Species-800 (S800) corpus

(Pafilis et al. 2013). The LINNEAUS corpus of 100 full-text
articles was the first big effort to generate a manually anno-
tated corpus for evaluating named entity recognition (NER)
and normalization for species. Following LINNEAUS, the
S800 corpus aimed at increasing the diversity of species anno-
tations and coverage of different life domains in comparison
to the former. For these reasons a corpus was compiled con-
sisting of abstracts—instead of full-text documents—from
2011 and 2012, published in journals representing to eight
different categories: seven positive categories for different tax-
onomic groups and an eighth category (Medicine) primarily
included as a negative control.

Both of these corpora were originally introduced to support
the development and evaluation of dictionary-based NER
tools. Existing tools use dictionaries based on NCBI
Taxonomy (Schoch et al. 2020), a widely used system for clas-
sifying living organisms based on their evolutionary relation-
ships. NCBI taxonomy includes e.g. subspecies and strains in
addition to species and higher forms of life, like orders and
kingdoms, and is commonly used to develop and evaluate
dictionary-based NER tools for identifying entities in text.
These tools generally focused on identifying the right entities
in text rather than on getting the species name boundaries
perfectly right. Evaluations were thus done using relaxed
boundary matching and corpus annotation guidelines
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consequently did not need to have stringent definitions for
how to annotate boundaries. While this is no problem for the
originally intended purpose of these corpora, most recent DL
experiments on them (Giorgi and Bader 2018, Sharma and
Daniel 2019, Lee et al. 2020, Lewis et al. 2020, Kocaman and
Talby 2021, Phan et al. 2021, Zhang et al. 2021) use the stan-
dard exact matching criteria established in the CoNLL shared
tasks, which then becomes problematic.

In fact, currently no corpus exists that is well-designed for
DL-based species detection. Most corpora, including
LINNAEUS and broader corpora like GENIA (Kim et al.
2003), have been created in ways that resulted in human and
model organisms making up the vast majority of the species
annotations. This low diversity of species in most corpora can
already be an issue during evaluation of DL-based methods,
but is much more problematic when the corpora are used for
training. For the purpose of training DL-based methods to rec-
ognize species names, ideally a corpus would contain a wide
range of different species names covering all kingdoms of life,
systematically annotated with accurate boundaries regardless of
whether the species is included in NCBI Taxonomy.

Here, we present S1000, a corpus for species NER, which
builds upon S800. S800 was chosen as a starting point, since
it already fulfills the criteria of species name diversity and rep-
resentation and is widely used to assess species NER methods.
In S1000, the number of unique and total mentions of taxo-
nomic names compared to S800 has doubled. Significant
improvements were made so that S1000 can support training
of state-of-the-art DL-based methods for species NER (F-
score¼ 93.1%), while at the same time continue serving its
original purpose of a corpus for the evaluation of dictionary-
based NER methods.This, in combination with the extension
with 200 more documents, has increased the variance of the
corpus, and thus the generalizability of models trained on it,
while still maintaining very high performance. All of the
above showcase that S1000 can serve as a new and improved
gold standard for the evaluation of DL-based language mod-
els on species NER.

2 Materials and methods
2.1 Manual revision of corpus annotation

The revision of the corpus annotation consisted of the follow-
ing primary steps:

• Decoupling of recognition from normalization
(“Decoupling”)

• Revision of annotations for boundary consistency
(“Boundary consistency”)

• Separation of strain from species mentions (“Strains”)
• Annotation of genera (“Genera”)
• Extension of corpus with additional documents and final

polish (“Extension”).

In the following, we briefly describe these steps. More
details regarding the annotation rules followed to produce the
corpus can be found in the annotation documentation that
the annotators have used (https://katnastou.github.io/s1000-
corpus-annotation-guidelines).

2.1.1 Decoupling of recognition from normalization

The original S800 corpus only annotated species mentions
that could be normalized to a version of the NCBI Taxonomy

from 2013 (Pafilis et al. 2013). This made sense from the
standpoint of evaluating dictionary-based methods developed
at the time, since none of them would be able to recognize
and normalize species not existing in NCBI Taxonomy.
However, from the perspective of pure NER of species names
(regardless of normalization), this caused the annotation to
appear incomplete in places. In the first revision step, annota-
tion was added for scientific and common names of species re-
gardless of whether they could be normalized to an NCBI
Taxonomy identifier in the version of the database published
in 2020 (Schoch et al. 2020). A revision pass addressing the
overall consistency of annotation was performed, and anno-
tated names of genera, families, and other levels of taxonomy
above species were annotated as “out-of-scope” during this
process. Moreover, genus or higher-level mentions (e.g.
Arabidopsis, yeast) that were originally annotated as syno-
nyms of species names, received an annotation corresponding
to their real taxonomic level (e.g. genus for Arabidopsis).
Annotated entities include only taxonomic and common
names, which means that nominal non-name “species clues,”
such as “patient” or “woman”—which are annotated in the
LINNEAUS corpus (Gerner et al. 2010), but not in the origi-
nal S800 corpus—remained unannotated.

2.1.2 Revision of annotations for boundary consistency

The original evaluation of taggers using the S800 corpus
(Pafilis et al. 2013) applied relaxed boundary matching crite-
ria. As a result, any tag that overlapped with a sub-string of a
manually annotated species entity with the correct taxonomic
identifier assigned was regarded as a true positive for evalua-
tion purposes. This resulted in the boundaries of annotated
mentions to be inconsistently annotated in many places,
which as explained above, is a problem when training ma-
chine learning-based methods. To address this issue, we cre-
ated detailed guidelines on how to determine entity
boundaries and made a revision pass addressing span consis-
tency issues in the dataset. This revision step also included a
focused review of the annotation of virus mentions, which
had comparatively frequent annotation boundary issues.
During this revision step, organism mentions of taxonomic
rank genus and above in the “Viruses” superkingdom were
corrected to better reflect their place in the lineage, thus fixing
cases of imprecise normalization to species mentions in the
original S800 corpus.

2.1.3 Separation of strain mentions from species mentions

The original S800 corpus annotation only involves a single
annotated mention type (“species”) that is used to annotate
mentions of species names, as well as mentions of strains. In
this revision of the corpus, we introduced a separate “strain”
type and revised all strain name mentions to use this type,
also revising the spans of species annotations to exclude strain
names when the two occurred together in text. The lack of a
universally accepted definition of “strain,” both within spe-
cific communities [e.g. virology (Kuhn et al. 2013)] and across
different communities, makes the strict definition of “strain”
entity type impossible. For this reason, we decided, to also an-
notate other fine-grained taxa from NCBI Taxonomy (Schoch
et al. 2020), namely “forma specialis,” “varietas,”
“subvariety,” “forma,” “serogroup,” “serotype,” and
“isolate,” as “strain” in the corpus. The only taxonomic
groups “below species level” that were treated differently are
“subspecies” and “biotypes,” where entire mentions were
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simply annotated as slightly longer “species” mentions.
Finally, cultivars and ecotypes, which are not a not official
taxonomic ranks, were treated as “out-of-scope.”

2.1.4 Annotation of genera

The original S800 corpus annotation included partial annota-
tion for mentions of names at taxonomic ranks above species,
in particular in a number of cases where these names were
used in an imprecise way to refer to species (e.g. Drosophila
for Drosophila melanogaster). As mentioned above, during
the initial revision step addressing annotation consistency, we
marked such cases as “out-of-scope.” This resulted in the re-
duction of the coverage of the revised annotation in some
aspects from that of the original S800 corpus. To partially
remedy this issue, we reintroduced annotation for mentions of
names at the “genus” taxonomic rank in a systematic way, by
adding it as a distinct annotated type. For annotations above
the “species” rank only the “coarse” ranks have been consid-
ered, thus mapping mentions at fine-grained levels to their
coarse equivalents, e.g. “subgenus” maps to “genus.”
“Clade” rank is a new monophyletic, non-hierarchical rank,
introduced in the latest revision of NCBI taxonomy. Since this
rank is non-hierarchical, and can appear anywhere in the line-
age without breaking the order, mentions normalizing to
NCBI taxonomy nodes with the “clade” rank have been
assigned the type based on the rank of their first non-clade an-
cestor node, when that was in scope of our annotation.

2.1.5 Extension of corpus with additional documents and
final polish

Despite its efforts to increase diversity, there is still a concern
that since all the articles in S800 originate from the same jour-
nals, any method trained using these data might overfit to
that specific corpus during development and might not per-
form as well in an open-domain annotation task. To alleviate
this concern, we decided to introduce even more diversity in
the corpus, via its extension with 200 additional documents,
thus generating the extended version of S800, called S1000.
The selection process was such so that the new documents
would not be limited to specific preselected journals and spe-
cific publication years. In the next two subsections the selec-
tion process of documents in the positive and negative
categories is explained in more detail.

Positive categories

For the extension of abstracts in the positive categories, we
wanted to select publications that would contain species men-
tions, whose genera are not represented in the original S800
corpus. This includes all the genera of the species in S800,

retrieved by mapping the species mentions to their parental
rank in NCBI Taxonomy. To avoid biasing the new docu-
ments toward what can be found by a specific text-mining
system, we decided not to use text mining to find candidate
abstracts. Instead, we used the literature references within
manually curated UniProtKB/SwissProt (SwissProt hereafter),
which are added by annotators as the primary source to sup-
port annotations of proteins (The UniProt Consortium 2021).
This allows easy automatic retrieval of the corresponding
abstracts, which will commonly mention the name of the spe-
cies that the protein is from, despite the fact that SwissProt is
a protein resource. Thus, we could use this strategy to obtain
a broad selection of candidate abstracts containing species
names from genera complementary to those already included
in S800.

An advantage of the original S800 over other corpora, is
the fact that documents come from different categories, which
in turn allows better performance evaluation during bench-
marking, as it can be assessed whether a method is better
“across the board” or in a specific domain. This is a property,
we wanted to maintain during the corpus extension in S1000.
An added advantage of using SwissProt to detect candidate
documents for annotation is that it permits the placement of
documents in the same categories as in the original corpus,
which both retains balance and allows the new process to be
consistent with what was originally done. Specifically, since
SwissProt entries have information about the taxonomy of
the species to which a protein belongs to, we decided to map
the document categories of the original S800, to taxonomic
ranks in NCBI taxonomy. This allows to label documents as
belonging to a specific category based on the taxonomy of the
species a protein belongs to. The mapping and the number of
documents for each category are shown in Table 1. Finally,
25 documents were randomly selected for each of the positive
categories and were added to the corpus.

Negative category

In addition to the categories mentioned in Table 1, the origi-
nal S800 contained 100 abstracts from the medical literature,
which served as a negative category in which not many spe-
cies’ names mentions were expected to show up. To detect
documents that would serve as a negative control for S1000,
but to avoid focusing on specific journals or publication
years, we aimed our selection toward PubMed abstracts
where a species tagger (Pafilis et al. 2013) had not detected
any species mentions. In total, there were 20 320 693 docu-
ments with no species mentions detected, and from those we
randomly selected 25 to form the negative category for the
S1000 corpus.

Table 1. Mapping between categories in S800 and NCBI Taxonomya.

Journal category NCBI Taxonomy name (NCBI: txid) Rank Document count

Virology Viruses (NCBI: txid10239) Superkingdom 5843
Bacteriology Bacteria (NCBI: txid2) Superkingdom 6820
Mycology Fungi (NCBI: txid4751) Kingdom 1331
Botany Viridiplantae (NCBI: txid33090) Kingdom 3158
Zoology Metazoa (NCBI: txid33208) excluding Insecta (NCBI: txid50557) Kingdom 14 506
Entomology Insecta (NCBI: txid50557) Class 799
Protistology Eukaryota (NCBI: txid2759) excluding Metazoa (NCBI: txid33208),

Fungi (NCBI: txid4751),b and Green Plants (NCBI: txid33090)c
671

a The number of documents found in SwissProt for proteins belonging to organisms in each of these taxonomic groups is provided.
b All organisms of the clade Opisthokonta, apart from Metazoa and Fungi, are treated as protists.
c Chlorophyta and Streptophyta are phyla of Viridiplantae, so they belong to Botany and not to protists.
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Quality control

As a final step, a semi-automated check was performed to
evaluate the consistency of mentions in text and the names
and synonyms of the NCBI taxonomy entries that these nor-
malize to. This produced a list of common and scientific spe-
cies and genus names that do not have a clear match in the
NCBI taxonomy. All these names were manually checked
against alternative taxonomic resources [namely ITIS (https://
www.itis.gov/), Catalogue of Life ( https://www.catalogueo
flife.org/), Avibase ( https://avibase.bsc-eoc.org/), ICTV
(https://talk.ictvonline.org/taxonomy/), and WoRMS ( https://
www.marinespecies.org/)] to assess whether a link to NCBI
taxonomy entries could be obtained via them. Where possible,
species and genera synonyms were added for mapping be-
tween the surface form and the taxonomy name.

To assess the overall quality of annotations, we assigned
20% of abstracts of the extended corpus to two curators,
who annotated them independently. Then the F-score of their
agreement was calculated to ascertain the consistency of the
annotations and the quality of the corpus.

2.2 Dictionary-based NER

The JensenLab tagger ( https://github.com/larsjuhljensen/tag
ger) (Jensen 2016) is a dictionary-based method used for the
recognition of species mentions, among other biomedical
entities. The species NER is extremely important for the text-
mining evidence channel in the influential database of pro-
tein–protein interactions STRING (Szklarczyk et al. 2023), as
it allows both the recognition of the species of origin for pro-
teins mentioned in text, as well as the disambiguation of am-
biguous protein names, based on species mentions in the
document. It is also important for other resources, like
ORGANISMS (Pafilis et al. 2013) with tagging results of
organism names in the scientific literature.

As already mentioned, biomedical corpora for species
names, like S800, had been originally developed with the pur-
pose of evaluating dictionary-based methods. To make sure
that the revised version of the corpus is still suitable for this
original purpose, the final revised annotation of S1000 was
used to evaluate JensenLab tagger. This evaluation focused
solely on mentions of type “species” in the corpus. The
JensenLab tagger software was run on the S1000 corpus test
set and taxonomic identifiers were mapped to their corre-
sponding taxa. All identifiers above species level were ignored
and all mentions of taxa below species level were assigned to
their parent species and were kept during this evaluation. This
was done for consistency with how the JensenLab tagger
works, as it uses the taxonomy structure to backtrack names
at lower taxonomic levels to all their parent levels. Moreover,
mentions in two branches of the NCBI taxonomy—namely
“other entries” and “unclassified entries”—which contain
metagenomes, plasmids, and other similar entries, were out of
scope for the annotation effort of S1000 and were also ig-
nored during the evaluation phase.

2.3 Transformer-based NER

Since the majority of the biomedical text-mining community
has now migrated to DL-based and specifically Transformer-
based methods—as shown e.g. in Miranda et al. (2021)—we
needed to make sure that this corpus can serve the purposes
of both training and evaluating DL-based methods. The cur-
rent state-of-the-art methods in NER dominantly utilize mod-
els based on the Transformer architecture (Vaswani et al.

2017), and for that reason we focused our efforts on these.
These models are initially pre-trained on large collections of
text to produce a general language model. Such models can
then be fine-tuned to perform specific tasks, such as NER. We
have selected three pre-trained models for closer evaluation,
namely RoBERTa-large-PM-M3-Voc (hereafter RoBERTa-
biolm) (Lewis et al. 2020), BioBERT Large, cased (hereafter
BioBERT) (Lee et al. 2020), and BioMegatron 345M Bio-
vocab-50k, case (hereafter BioMegatron) (Shin et al. 2020).
These models have been pre-trained on biomedical literature
and have shown good performance in NER tasks for biomedi-
cal texts.

2.4 Experimental setting

We used the method proposed in Luoma and Pyysalo (2020)
for training and evaluation of the Transformer-based models.
We fine-tuned the models to detect the available entity types
in the training data (“species,” “strain,” and “genus” depend-
ing on the corpus’ revision step) with attaching a single fully
connected layer on top of the Transformer architecture for
classifying individual tokens in input samples.

The training and evaluation of all of the steps except the
last (“Expansion”) are done on the same original documents
that created the S800 corpus. Initially the documents were
split to separate training, development, and test sets: 560
documents for training, 80 for development, and 160 for test
set, using the standard split introduced in Hakala et al.
(2016). The final stage of extending the corpus brings the
numbers up to 700 documents for training, 100 for develop-
ment, and 200 for the test set, while still respecting the origi-
nal split. For this research the training and development sets
were combined and then split to eight folds with stratification
over the original publication sources. The folds on document
level were kept the same for each corpus development step
with documents added on each fold in the last step
(“Expansion”).

The hyperparameter selection was done using a grid search.
The experiments with each combination of hyperparameters
were run in a cross-validation setup to reduce the effects of
over-fitting to development set and to reduce the effect of ran-
dom events in the training process (e.g. layer initialization,
dropout) on the results. The hyperparameters producing the
best total mean F1-score on the 8-fold cross-validation for all
of the mention types was selected for training the models for
evaluation on test set. For the final evaluation against the test
set, all training and development data were used in fine-
tuning the models with the optimal hyperparameters. The
process was repeated five times and the results are expressed
as a mean and standard deviation of the exact match F1-score
(micro-averaged over all mention types).

We first compared the performance of the three different
Transformer-based models on the whole S1000 corpus and
then selected the best performing model as basis for further
evaluation of the performance on different corpus annotation
steps.

The progression of the performance on different corpus re-
vision steps defined in Section 2.1 was concentrating on spe-
cies mentions. In addition to the evaluation on exact match
F1-score, we evaluated the single model reaching the best ex-
act match F1 score on test data using the overlapping match-
ing criterion, to compare the performance with the
dictionary-based tagger.
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3 Results and discussion
3.1 Corpus statistics

In Table 2, an overview of corpus statistics is shown. The
numbers for unique names and total mentions of entities be-
longing to all taxonomic levels that were in scope for this an-
notation effort are shown. In this re-annotation and extension
effort, we have almost doubled the number of unique and to-
tal mentions compared to the S800 corpus. This is of course
mostly due to extending the scope from only “species” in
S800 to include also “strains” and “genera” in S1000. But
even the number of “species” alone has increased by 21%
(from 3708 to 4506), and the number of unique “species”
names by 16% (from 1503 to 1756).

The high quality of S1000 is supported by the fact that we
attained a 98.6% interannotator agreement over the three
classes of interest (“species,” “genus,” and “strain”). The
annotators were in full agreement for 100% of the “species”
mentions in the documents that were annotated by both. The
most difficult class appeared to be “genus” where the overall
agreement of the annotators was 88.89%. The interannotator
agreement for “strain” was 97.48%.

In a broader context, the S1000 corpus contains more than
seven times as many unique names as the LINNAEUS corpus
(2583/375). The high diversity of names was one of the key
motivators for choosing S800 as a starting point, and our
efforts to increase it even more have paid off, as is clear from
the corpus statistics presented in Table 2.

More detailed corpus statistics are available in
Supplementary Table S1.

3.2 Evaluation on transformer-based models

We used the combined training and development sets of the
S1000 corpus to fine-tune different pre-trained Transformer-
based models and evaluated their performance against the test
set of the corpus. The results of these tests are expressed as
mean entity level exact match F1-scores and standard devia-
tions of five repetitions of the test. The results are shown in
Table 3. The numbers are consistently around 90% for total
F1-score and over 90% for “species” mentions for all of the
tested models, showcasing even further that the S1000 corpus
provides improvements in recognition of “species” mentions
when compared to the earlier S800 corpus.

We find that the RoBERTa-biolm model outperforms the
other two on this dataset, partially agreeing with the findings
of Lewis et al. (2020), where the RoBERTa-biolm was found
performing better than BioBERT on various biomedical NER
datasets.

For detailed results please refer to Supplementary Table S2.

3.3 Progression

The progression of the results in tagging performance of
“species” mentions with RoBERTa-biolm is shown in Fig. 1.
The “exact matching” criterion is used during this evaluation.
From the figure it can be seen that each of the first three cor-
pus revision steps increases the performance on “species”
mentions. Then, the addition of “genus” mentions causes a
slight decrease in recall, but continues to improve precision.
Finally, the addition of 200 documents with more diverse
names causes a decrease in performance, reflecting the new
challenges introduced by the addition of documents, as origi-
nally intended. Specifically, the extension can actually help
generate a corpus with higher variance, which in turn allows
the training of more “generalizable” models. At the same
time, it does not take away from the huge progress that was
made from the initial to the final revision step, making—to
the best of our knowledge—S1000 the best DL-ready corpus
for species NER currently in existence.

For detailed results please refer to Supplementary Table S3.

3.4 Performance comparison and error analysis
3.4.1 Evaluation on the entire corpus

From the progression curve presented above (Section 3.3) it is
clear that S1000 is a better corpus for training DL-based
methods. But, we also needed to test if it can serve its original
purpose of evaluating dictionary-based methods. To test this,
we applied both the dictionary-based (Jensenlab) and
Transformer-based taggers on the S1000 test set and evalu-
ated them on “species” names detection. Since the JensenLab
tagger finds left-most longest matches of the names in its dic-
tionary, which includes more than just species names, the
“overlapping matching” criterion is used to evaluate both
methods. The F-score for dictionary-based tagger on this set is
84.7% (precision: 87.3%, recall: 82.3%), while for the
Transformer-based tagger is 97.0% (precision: 97.9%, recall:
96.1%). The results for the Transformer-based model are
even better than those reported above, since the switch from
using the exact to the overlapping matching criterion during
evaluation, eliminates all boundary inconsistency errors for
this method.

An analysis of the errors produced by both methods,
grouped into categories, is presented in Table 4. For a detailed
overview of all the errors, please refer to Supplementary
Tables S4 and S5, for the JensenLab tagger and the
Transformer-based tagger, respectively.

More than 50% of the errors produced by the dictionary-
based tagger are “dictionary errors.” As is evident by their
name, dictionary-based methods are only as good as their
source dictionary, and this inherent property is clearly
reflected in the error analysis performed above. Most of the
dictionary errors affect its recall, meaning that the issue we

Table 2. S1000 corpus statisticsa.

Category Unique names Total mentions

Corpus S1000 S800 S1000 S800
Bacteriology 316 179 788 416
Botany 217 131 510 308
Entomology 441 293 965 614
Mycology 266 178 784 538
Protistology 638 284 1104 497
Virology 532 342 1539 946
Zoology 283 160 519 299
Medicine 46 30 119 90
Total 2583 1503 6328 3708

a The numbers for unique and total mentions for S800 as presented in
the original publication (Pafilis et al. 2013) are also provided.

Table 3. Model comparison on S1000a.

Type RoBERTa-biolm BioMegatron BioBERT

F1b SDb F1 SD F1 SD

Species 93.14 0.79 91.48 0.57 91.20 0.42
Genus 91.45 0.72 86.52 1.72 88.44 1.40
Strain 80.28 1.58 80.61 1.06 78.75 2.94
Total 91.07 0.69 89.23 0.47 89.04 0.52

a Results are presented for all mentioned types on the test set. The exact
matching criterion is used during this evaluation.

b F1, F1-score; SD, standard deviation.
The highest F1-scores per type and in total are denoted with bold.
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observe here is mostly names missing from the dictionary.
“Discontinuous entities”—entities consisting of a discontinu-
ous sequence of words, e.g. hepatitis A and B viruses—and
“unofficial abbreviations”—e.g. Ae. aegypti—are another is-
sue mainly faced by the dictionary-based method. Even
though, these are clearly problems that affect the dictionary-
based method in this analysis, it should be noted that all these
problems would also affect the Transformer-based method if
normalization was done on top of recognition, and NCBI tax-
onomy was used as the source for this normalization. There
are of course measures one could take to reduce such issues
(e.g. using similarity metrics to identify synonyms and resolve
unofficial abbreviations), but when names are completely
missing from the source used for normalization, there is little
one can do.

Both methods seem to have issues with “ambiguous
names,” like “bees,” which can be both a species and a super-
family name. Considering the nature of such ambiguity—i.e.
the fact that the ambiguous name is a taxonomic name in ei-
ther case—it is easy to understand why such entities could af-
fect the performance of either method. “Upper taxonomic
level tagged as species” was a problem that affected both
methods similarly. For the dictionary-based tagger these
errors could be actually counted as dictionary errors, since
they reflect errors in synonyms assigned to “species” instead

of upper taxonomic ranks in NCBI taxonomy. For the
Transformer-based model errors of this type and
“Transformer-based model error” are a result of “clade” or
“no rank” entities in NCBI taxonomy being annotated as
“species” (see Section 2.1.4 for more details) and common or-
ganism names either not being detected, or being misclassified
in regards to their position in the taxonomy.

As mentioned in Section 2, the JensenLab tagger always
backtracks lower taxonomic level mentions to their “species”
parent. This leads to one type of error in Table 4, “lower tax-
onomic level tagged as species,” which affects only the
dictionary-based method and might as well not be considered
actual errors. If these errors did not count as false negatives
then the true positive count would increase from 811 to 867.
Similarly, if “annotation errors” were not counted as either
false negatives or false positives, then the true negative count
would decrease from 984 to 982 and the true positive count
would increase to 874. If metrics are then recalculated for the
dictionary-based method, the precision would now be 94.1%,
the recall 82.5%, and the F-score 87.9%. Not counting
“annotation errors” for the Transformer-based tagger would
also slightly increase its precision to 98.13% and F-score to
97.12%. The dictionary-based tagger seems to perform much
better, if these errors are not counted, but still cannot outper-
form the Transformer-based model, since the majority of the
errors continue to be due to shortcomings of the dictionary,
as already discussed above.

3.4.2 Evaluation per journal category

The design of the S800 corpus, and consequently also of
S1000, allows us to delve deeper when assessing the errors
produced by both dictionary and DL-based methods during
NER. S1000 consists of eight journal categories, correspond-
ing to seven taxonomic groups (see Table 1) and a negative
class. These can be used to identify whether specific categories
of documents—and as a consequence specific parts of the tax-
onomy—are more difficult to detect in text.

The Transformer-based method (Fig. 2, triangles) seems to
perform consistently well in all journal categories, with both
precision and recall over 95% for all categories, except
Virology. The recall for the dictionary-based tagger is consis-
tently lower, but as explained in Section 3.4.1 this is mostly
due to names missing from the dictionary. To better assess
what explains the differences in recall, one can examine a
journal category where the precision for the two methods is
similar, but the recall is significantly different, like Zoology
(Fig. 2, yellow). When one examines the errors in
Supplementary Tables S4 and S5, it is obvious that both

Table 4. Error analysis for the JensenLab tagger and the Transformer-based tagger.

Total FNa FPa

Error categories dict-based TF-baseda dict-based TF-based dict-based TF-based

Ambiguous name 35 18 34 10 1 8
Annotation error 9 2 7 0 2 2
Dictionary error 157 113 44
Discontinuous entity 6 0 6 0 0 0
Lower taxonomic level tagged as species 56 0 0 0 56 0
Upper taxonomic level tagged as species 17 10 0 0 17 10
Transformer-based model error 24 24 0
Unofficial abbreviation 12 4 12 4 0 0
Total 292 58 172 38 120 20

a FN, false negative; FP, false positive; dict-based, dictionary-based tagger; TF-based, transformer-based tagger.

Figure 1. Performance on species mentions on test data for different

corpus revision steps. The arrows denote the sequence of the

progression. In parentheses next to each step the F-score is provided.

The different corpus revision steps are defined in Section 2.1.
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methods have a problem with “gibbon,” which is tagged as a
“species” mention instead of “family” for both. All the
remaining errors, that lower the recall for the dictionary-
based method, are cases of common species names that are
missing as synonyms for the respective NCBI taxonomy
entries. When examining another category with differences
both in precision and recall, like Bacteriology (Fig. 2, blue), it
seems that the vast majority of false positives are names that
should be blocked, while the false negatives are Linnean
names that are missing from NCBI taxonomy. In this cate-
gory, it is obvious that the precision of the dictionary-based
method could be improved, e.g. by using a DL method to sug-
gest names to block from tagging. This is a project that we are
currently working on to improve our dictionary. As previ-
ously noted, false negatives mainly occur due to the absence
of certain common and Linnean taxonomic names in NCBI
Taxonomy.

Both methods perform worst on papers from Virology jour-
nals. This is probably due to the non-systematic naming con-
ventions for viruses and the extensive use of acronyms in this
field, which result in names that are difficult to capture for
both DL- and dictionary-based methods. The error analysis
for the dictionary-based method shows that the two main
sources of errors in this journal category are once again either
entities missing from the dictionary or lower taxonomic level
entities captured as species (with the latter not being a prob-
lem in a real-world scenario, as explained in Section 3.4.1).

3.5 Large-scale tagging

Results on tagging of PubMed abstracts (as of August 2022)
and articles from the PMC open access subset (as of April
2022) for both the JensenLab tagger and the Transformer-
based method are provided via Zenodo (https://doi.org/10.
5281/zenodo.7064902). There are in total 185 869 193 or-
ganism matches for JensenLab tagger, amongst which the vast
majority (176 700 642) are species or subspecies mentions
backtracked to species, covering 818 547 unique species
names. Tagging with the Transformer-based model yielded
196 511 523 total matches, comprising 142 522 111 species,
36 461 427 strain, and 17 527 985 genus matches. These

comprised 4 041 604 unique names, of which 1 953 694 are
species.

4 Conclusions

In this work, we present S1000, a re-annotated and expanded
high-quality corpus for species, strain, and genera names. We
propose the use of this improved corpus as a gold standard
for the evaluation of DL-based language models in the place
of the already widely used S800 corpus. Our experiments
have shown that the use of S1000 results in a clear improve-
ment in performance with an 18.3% increase in F-score (from
74.8% in S800 to 93.1% in S1000). This was achieved
mainly because the re-annotation effort focused on ensuring
that S1000 can support the training of state-of-the-art DL-
based models. Moreover, the expansion with 200 additional
documents allows training of more generalizable models,
while still maintaining over 90% F-score. We have also dem-
onstrated that the annotation improvements have not affected
our ability to use the corpus for the evaluation of dictionary-
based NER methods, on top of DL-based methods. Notably,
the unique and total mentions of names in S1000 have almost
doubled in comparison to S800. Finally, all data used in this
project, along with the code to reproduce the results, are pub-
licly available, including results of large-scale tagging of the
entire literature.
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Figure 2. Precision–recall plot for the dictionary-based and the
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and “genera.” F-score contours are presented with grey dots in the plot.

S1000 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/6/btad369/7192170 by guest on 05 July 2023

https://doi.org/10.5281/zenodo.7064902
https://doi.org/10.5281/zenodo.7064902
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad369#supplementary-data
https://jensenlab.org/resources/s1000/
https://doi.org/10.5281/zenodo.7064902
https://doi.org/10.5281/zenodo.7650251
https://zenodo.org/record/8034112
https://zenodo.org/record/8034112
https://zenodo.org/record/8034152
https://zenodo.org/record/8034152


References

Do�gan RI, Leaman R, Lu Z. NCBI disease corpus: a resource for disease
name recognition and concept normalization. J Biomed Inform
2014;47:1–10.

Gerner M, Nenadic G, Bergman CM. LINNAEUS: a species name iden-
tification system for biomedical literature. BMC Bioinformatics
2010;11:85.

Giorgi JM, Bader GD. Transfer learning for biomedical named entity rec-

ognition with neural networks. Bioinformatics 2018;34:4087–94.
Hakala K, Kaewphan S, Salakoski T et al. Syntactic analyses and named

entity recognition for pubmed and pubmed central—up-to-the-min-

ute. In: Proceedings of the 15th Workshop on Biomedical Natural
Language Processing. 102–7. 2016.

Jensen LJ. One tagger, many uses: illustrating the power of ontologies in
dictionary-based named entity recognition. bioRxiv, 2016;067132.

Kim J-D, Ohta T, Tateisi Y et al. GENIA corpus—a semantically anno-

tated corpus for bio-textmining. Bioinformatics 2003;19:i180–2.
Kim J-D, Ohta T, Tsuruoka Y et al. Introduction to the bio-entity recog-

nition task at JNLPBA. In: Proceedings of the International Joint
Workshop on Natural Language Processing in Biomedicine and Its
Applications. 70–5. Citeseer, 2004.

Kocaman V, Talby D. Biomedical named entity recognition at scale. In:
Del Bimbo A, Cucchiara R, Sclaroff S (eds), Pattern Recognition.
ICPR International Workshops and Challenges. Cham: Springer

International Publishing, 2021, 635–46.
Krallinger M, Rabal O, Leitner F et al. The CHEMDNER corpus of

chemicals and drugs and its annotation principles. J Cheminform
2015;7:1–17.

Kuhn JH, Bao Y, Bavari S et al. Virus nomenclature below the species

level: a standardized nomenclature for natural variants of viruses
assigned to the family Filoviridae. Arch Virol 2013;158:301–11.

Lee J, Yoon W, Kim S et al. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics
2020;36:1234–40.

Lewis P, Ott M, Du J et al. Pretrained language models for biomedical and
clinical tasks: understanding and extending the state-of-the-art. In:

Proceedings of the 3rd Clinical Natural Language Processing
Workshop. 146–57. Association for Computational Linguistics, 2020.

Li J, Sun Y, Johnson RJ et al. BioCreative V CDR task corpus: a resource

for chemical disease relation extraction. Database 2016;2016:baw068.

Luoma J, Pyysalo S. Exploring cross-sentence contexts for named entity

recognition with BERT. In: Proceedings of the 28th International

Conference on Computational Linguistics. 904–14. Barcelona, Spain:

International Committee on Computational Linguistics, 2020.

Miranda A, Mehryary F, Luoma J et al. Overview of DrugProt

BioCreative VII track: quality evaluation and large scale text mining

of drug-gene/protein relations. In: Proceedings of the Seventh

BioCreative Challenge Evaluation Workshop. 2021.
Pafilis E, Frankild SP, Fanini L et al. The species and organisms resources

for fast and accurate identification of taxonomic names in text. PLoS

One 2013;8:e65390.
Phan LN, Anibal JT, Tran H et al. SciFive: A Text-To-Text Transformer

Model for Biomedical Literature. arXiv, arXiv:2106.03598, 2021.
Pyysalo S, Ananiadou S. Anatomical entity mention recognition at litera-

ture scale. Bioinformatics 2014;30:868–75.

Schoch CL, Ciufo S, Domrachev M et al. NCBI taxonomy: a compre-

hensive update on curation, resources and tools. Database 2020;

2020:baaa062.

Sharma S, Daniel R Jr. BioFLAIR: pretrained pooled contextualized

embeddings for biomedical sequence labeling tasks. arXiv,

arXiv:1908.05760, 2019.

Shin H-C, Zhang Y, Bakhturina E et al. BioMegatron: larger biomedical

domain language model. In: Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP).

4700–6. Association for Computational Linguistics, 2020.
Smith L, Tanabe LK, Kuo C-J et al. Overview of BioCreative II gene

mention recognition. Genome Biol 2008;9:1–19.
Szklarczyk D, Kirsch R, Koutrouli M et al. The string database in 2023:

protein–protein association networks and functional enrichment

analyses for any sequenced genome of interest. Nucleic Acids Res

2023;51:D638–46.
The UniProt Consortium. UniProt: the universal protein knowledgebase

in 2021. Nucleic Acids Res 2021;49:D480–9.
Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. In:

Proceedings of the 31st International Conference on Neural

Information Processing Systems, NIPS’17. 6000–10. Red Hook,

NY, USA: Curran Associates Inc., 2017.
Zhang Y, Zhang Y, Qi P et al. Biomedical and clinical English model

packages for the Stanza Python NLP library. J Am Med Inform

Assoc 2021;28:1892–9.

8 Luoma et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/6/btad369/7192170 by guest on 05 July 2023


	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5
	tblfn6
	tblfn7
	tblfn8

