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Simple Summary: Optimization of metamorphosis, a key stage in development where fish undergo
several morphological and physiological changes, may assure the efficient mass production of greater
amberjack (Seriola dumerili) juveniles. Application of probiotics as feed and/or water additive benefits
nutrient utilization through modulation of the digestive enzymes. Therefore, following the addition of
biofilters with the probiotic Phaeobacter inhibens in the rearing water throughout the early development
of greater amberjack, crucial in metamorphosis, cellular pathways were investigated. The probiotic
treatment increased the growth of greater amberjack, while hypertrophy was the main growth process
in the metamorphosis. Additionally, the rearrangement of structures and tissues may have been
facilitated through the observed induced cell death. The present findings are of great importance
and may be applied in the aquaculture industry in order to enhance greater amberjack development
and growth.

Abstract: Metamorphosis entails hormonally regulated morphological and physiological changes
requiring high energy levels. Probiotics as feed supplements generate ameliorative effects on host
nutrient digestion and absorption. Thereby, the aim of the present research was to investigate the
impact of the probiotic Phaeobacter inhibens as a water additive on cellular signaling pathways in
the metamorphosis of greater amberjack (Seriola dumerili). Activation of insulin-like growth factor
type 1 receptor (IGF-1R), protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and
AMP-activated protein kinase (AMPK), induction of heat shock proteins (Hsps), and programmed
cell death were assessed through SDS-Page/immunoblot analysis, while energy metabolism was
determined through enzymatic activities. According to the results, greater amberjack reared in
P. inhibens-enriched water entered the metamorphic phase with greater body length, while protein
synthesis was triggered to facilitate the hypertrophic growth as indicated by IGF-1/Akt activation
and AMPK inhibition. Contrarily, MAPKs levels were reduced, whereas variations in Hsps response
were evident in the probiotic treatment. Apoptosis and autophagy were mobilized potentially for
the structural remodeling processes. Furthermore, the elevated enzymatic activities of intermediary
metabolism highlighted the excess energy demands of metamorphosis. Collectively, the present
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findings demonstrate that P. inhibens may reinforce nutrient utilization, thus leading greater amberjack
to an advanced growth and developmental state.

Keywords: insulin-like growth factor type 1 receptor (IGF-1R); cellular signaling; hypertrophy; cell
death; post-embryonic development; teleost; probiotics; aquaculture

1. Introduction

Metamorphosis, a crucial stage in teleost post-embryonic development, encompasses
the irreversible, abrupt, and nonsexual ontogenetic transition from larval to juvenile, a
sexually immature form of the adult stage [1]. Teleosts undergo several changes in mor-
phological, physiological, and behavioral traits that precede the juvenile transition, such as
maturation of internal organs, changes in gill mitochondria-rich cells, and conformation of
the adult pigmentation pattern [1–3]. Metamorphic remodeling is governed by thyroid hor-
mones, while other endocrine factors, such as cortisol, prolactin, and the growth hormone
(GH)/insulin-like growth factor (IGF) system, are also involved in the regulation of several
cellular and developmental processes [4,5].

The GH/IGF system, pivotal to growth regulation [6], is highly linked to the meta-
morphic success of teleosts [7–9]. The effects of GH on somatic growth are mediated
by IGF-1, a polypeptide hormone mainly produced in the liver that exerts a plethora of
physiological and developmental actions on target tissues in an endocrine manner [9–11].
Consequent to its GH-stimulated secretion in circulation, IGF-1 acts on cells by binding to
the IGF-1 receptor (IGF-1R) [10,12,13]. The latter triggers IGF-1R autophosphorylation, thus
leading to the activation of two intracellular downstream signaling pathways, the phos-
phatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and the mitogen-activated protein
kinase/extracellular signal-regulated kinase (MAPK/ERK) [13,14]. The PI3K/Akt trans-
duces stimulatory signals for cellular differentiation [15], hypertrophy [16], and protein
synthesis [17], fundamental factors in animals’ development and growth. Cellular uptake
of amino acids and glucose is also modulated via the PI3K/Akt signaling to supply the
required substrates and energy for growth-related anabolic processes [3,18]. In contrast, the
proliferative function of IGF-1 is mediated via the MAPK/ERK pathway [14], which also
comprises a critical regulator of cell terminal differentiation [19]. Additionally, MAPK/ERK
signaling is involved in the up-regulation of heat shock proteins (Hsp) expression [20,21],
which are implicated in several developmental stages [22,23], including induction and
completion of metamorphosis [24,25].

Hormonally regulated programmed cell death also constitutes an essential component
of normal developmental progression, facilitating ongoing tissue remodeling and func-
tional reorganization [26]. During metamorphosis, apoptotic cell death is triggered for the
degeneration of larva transient structures and the sculpting of adult-specific organs [27,28].
Furthermore, apoptosis functions as a quality control mechanism, ensuring the elimination
of defective and surplus cells, as well as compensation for mispatterning [28,29]. Apoptosis
is determined by the interplay between pro-apoptotic and anti-apoptotic signals and is
implemented via the activation of the caspases cascade, which orchestrates the cleavage
of cellular substrates [28,30]. Nevertheless, deletion and renovation of cells and tissues
may also be facilitated via autophagy, an intracellular catabolic system that promotes the
degradation and recycling of cytoplasmic constituents in the lysosome, thereby preserving
energetic homeostasis in cells undergoing developmental procedures [29,31,32].

The initiation of metamorphosis is coordinated in response to miscellaneous phys-
iological and environmental cues, including endocrine signaling, and changes in tem-
perature and food availability [4,33,34]. The metamorphosing period is accompanied by
high requirements for specific nutrients, vital in both growth and physiological processes
such as hormone synthesis [35,36]. The application of probiotics as an environmentally
friendly alternative to antibiotics has emerged, encouraging the development of a sustain-
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able aquaculture industry [37]. Probiotics, defined as adjuncts to beneficial microbes or
microbial components in the host’s environment or feed [37,38], have been reported to
efficiently inhibit pathogens’ adhesion and enhance development, growth, feed utilization,
and digestibility in several fish species [39–42]. Species of the marine Roseobacter clade,
including Phaeobacter inhibens, which has recently been characterized as a “safe-to-use”
probiotic [43,44], are common members of the prokaryotic communities in aquaculture
systems [44–46] and effectively colonize a wide range of inorganic and organic surfaces [47].
Due to the ability to produce several unique bioactives, including the bactericidal antibi-
otic tropodithietic acid (TDA) [48], P. inhibens antagonistic activity and suppresses the
growth of potential opportunistic pathogens for the reared populations, such as Vibrio
and Aeromonas [45,49,50] with no adverse effects on the host [44]. Thereby, the aim of
the present study was to explore the effects of the probiotic bacterium P. inhibens as a
water additive on cellular and metabolic signaling pathways during the metamorphosis
of greater amberjack (Seriola dumerili), a potential candidate species for Mediterranean
aquaculture, the production of which faces several major bottlenecks related to nutrition
and reproduction [51,52].

2. Materials and Methods
2.1. Application of Biofilters with Phaeobacter inhibens to Greater Amberjack Larval
Rearing Conditions

The probiotic bacterial strain Phaeobacter inhibens [53] was provided by the Leibniz
Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH in the form
of a lyophilized preparation. The strain was reactivated in 5 mL of Marine Broth (MB, Difco
Laboratories, Detroit, MI, USA) by incubation at 22 ◦C for 7 days in the dark and stagnant
conditions, and thereafter inoculated in 2 L conical flasks of MB for 7 days. Commercial
aquaculture biofilter supporting medium of porous ceramic cylinders (Premium Filter
Material) made from natural quartzite was selected for the growth of P. inhibens [54]. The
ceramic cylinders were sterilized at 121 ◦C for 20 min.

P. inhibens liquid cultures were harvested from the 2 L conical flasks by centrifugation
at 12,000× g at 18 ◦C to remove the liquid culture medium. Afterward, filtered autoclaved
seawater was added to the probiotic cells, and they were transferred and equally divided
into the 5 L glass beakers with the ceramic cylinders. Additional filtered autoclaved
seawater was added until the cylinders were completely covered with seawater added
with bacteria. The beakers were covered with aluminum foil and incubated in the dark at
22 ◦C for 7 days. The ceramic cylinders were thereafter rinsed with sterile seawater and
placed in three plastic 10 L containers, which were covered with a 350 µm net to prevent
greater amberjack larvae from entering the biofilter. They were separately and carefully
placed inside three larval tanks. Aeration with an air stone was added to these simple
biofilters constructed in this way to oxygenate the cylinders and create a continuous water
exchange between the plastic container and the larval tank. In this way, cells of P. inhibens
were spread to the whole water volume in the rearing tanks.

2.2. Rearing of Greater Amberjack Larvae

Equal amounts of fertilized greater amberjack eggs were stocked in six 2800 L volume
cylindroconical tanks in a flow-through system at the hatchery facilities of Galaxidi Marine
Farm S.A., Greece. Borehole seawater was sand-filtered, aerated, and UV-treated prior to its
use in the rearing system. The biofilters with the probiotic P. inhibens had been submerged
in three tanks three days prior to the transfer of the amberjack eggs. The desired water
temperature (>23 ◦C) was achieved using heat pumps. After hatching, the larval density
was approximately 56 larvae/L. During the experimental period, the temperature and pH
remained stable at 23–24 ◦C and 8, respectively. The dissolved oxygen saturation level
was 85–95%. Water renewal was adjusted to 10% tank volume/h during egg incubation,
was reduced to 5% tank volume/h on the day of hatching, and thereafter was increased
gradually from 6 days post-hatching (dph) onwards up to 30% tank volume/h. Lights were
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turned on at 3 dph at 1000 lux intensity, decreased to 800 lux at 11 dph, 700 lux at 19 dph,
and 500 lux at 23 dph. The live feed diet consisted of Rotifers (Brachionus sp.) from 3 to
22 dph, newly hatched Artemia nauplii from 12 to 33 dph, and enriched Artemia metanauplii
from 18 dph up to the end of the trial. Formulated feed (Caviar Nature, BernAqua, Olen,
Belgium) was used from 23 dph onwards.

Throughout the experimental trial, total length was used as the main morphometric
index for the assessment of greater amberjack developmental progress [55,56]. On day 33,
post-hatching during the process of metamorphosis and, subsequently, to the completion of
notochord flexion, larvae from both experimental and control groups were sampled. From
each of the 3 tanks, two biological replicates were collected (N = 2 + 2 + 2 = 6). Fish were
captured, placed in 3 mL vials, and immediately frozen using liquid nitrogen. Samples
were later transferred to −80 ◦C until further analyses.

2.3. SDS/PAGE and Immunoblot Analysis

The preparation of samples for SDS-PAGE, quantification of caspases and ubiquiti-
nated proteins, and the immunoblot analysis are based on well-established protocols [57].
Specifically, frozen tissues were immediately homogenized in 3 mL g−1 of cold lysis buffer
(20 mM β-glycerophosphate, 50 mM NaF, 2 mM EDTA, 20 mM Hepes, 0.2 mM Na3VO4,
10 mM benzamidine, pH 7, 200 µM leupeptin, 10 µM trans-epoxy succinyl-Lleucylamido-
(4-guanidino)butane, 5 mM dithiotheitol, 300 µM phenyl methyl-sulfonyl fluoride (PMSF),
50 µg mL−1 pepstatin, 1% v/v Triton X-100), and extracted on ice for 30 min. Samples were
centrifuged (10,000× g, 10 min, 4 ◦C), and the supernatant was boiled with 0.33 volumes of
SDS/PAGE sample buffer (330 mM Tris-HCl, 13% v/v glycerol, 133 mM DTT, 10% w/v SDS,
0.2% w/v bromophenol blue). For the determination of LC3 II/I ratio and SQSTM1/p62
levels, samples were lysed in a buffer containing 150 mM NaCl, 20 mM Hepes, 5 mM
DTT, 0.3 mM PMSF, 0.2 mM leupeptin, 0.01 mM E64 and 1% Triton X-100. Lysates were
incubated on ice for 30 min and then centrifuged at 4 ◦C, for 5 min at 3000× g. Protein
concentration was determined by using the BioRad protein assay (Bio-Rad Protein Assay
Kit I, 5000001, BioRad, Hercules, CA, USA).

For the SDS-PAGE, equivalent amounts of proteins (50 µg) from samples of 5 individ-
ual batches of each developmental stage were separated either on 10% and 0.275% or 15%
and 0.33% (w/v) acrylamide and bisacrylamide, followed by electrophoretic transfer onto
membranes of nitrocellulose (0.45 µm, Schleicher and Schuell, Keene, NH, USA).

The resulting membranes were subjected to overnight incubation with: polyclonal
rabbit anti-bcl2 (7973, Abcam, Cambridge, UK), polyclonal rabbit anti-bax (B-9) (7480, Santa
Cruz Biotechnology, Dallas, TX, USA), monoclonal mouse anti-HSP70 (H5147, Sigma, St.
Louis, MO, USA), monoclonal mouse anti-HSP90 (H1775, Sigma), anti-HSP60 (12165, Cell
Signaling, Beverly, MA, USA), monoclonal mouse anti-phospho-SAPK-JNK (9255, Cell
Signaling, Beverly, MA, USA), polyclonal rabbit anti-phospho-p38 MAP kinase (9211, Cell
Signaling, Beverly, MA, USA), monoclonal rabbit anti-phospho p44/42 MAPK (4376, Cell
Signaling, Beverly, MA, USA), polyclonal rabbit anti-SAPK-JNK (9252, Cell Signaling, Bev-
erly, MA, USA), polyclonal rabbit anti-p44/42 MAPK (4695, Cell Signaling, Beverly, MA,
USA), polyclonal rabbit anti-p38 MAPK (9212, Cell Signaling, Beverly, MA, USA), mono-
clonal rabbit anti-LC3B (3868, Cell Signaling, Beverly, MA, USA), polyclonal rabbit anti-
p62/SQSTM1 (5114, Cell Signaling, Beverly, MA, USA), monoclonal rabbit anti-phospho
AMPK (2535, Cell Signaling, Beverly, MA, USA), monoclonal rabbit anti-AMPK (5831,
Cell Signaling, Beverly, MA, USA), anti-phospho-IGF-1R (3918, Cell Signaling, Beverly,
MA, USA), anti-IGF-1R (9750, Cell Signaling, Beverly, MA, USA) and anti-phospho-Akt
(9271, Cell Signaling, Beverly, MA, USA), anti-Akt (9272, Cell Signaling, Beverly, MA, USA).
Quality transfer and protein loading Western blot were assured by Ponceau stain and actin
(anti-β actin 3700, Cell Signaling, Beverly, MA, USA). Each of the examined proteins was
normalized with its respective β-actin.

Concerning cleaved caspases and ubiquitination levels, protein samples were im-
munoblotted with a dot blot apparatus employment [58], and membranes were overnight
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incubated with monoclonal rabbit anti-cleaved caspase antibody (8698, Cell Signaling) and
monoclonal mouse anti-ubiquitin conjugate (3936, Cell Signaling). Bands and blots were
detected by enhanced chemiluminescence, while quantification was applied through laser-
scanning densitometry (GelPro 4.0 Analyzer Software, GraphPad, San Diego, CA, USA).

2.4. Determination of Intermediate Metabolism Enzyme Activities

Activities of lactate dehydrogenase (L-LDH; E.C. 1.1.1.27.), citrate synthase (CS; E.C.
4.1.3.7.), and 3-hydroxyacyl CoA dehydrogenase (HOAD; 1.1.1.35) were estimated in sam-
ples according to well-established techniques [59–62]. For the analysis of L-LDH and
HOAD activities, samples were homogenized in a buffer containing 150 mM imidazole,
1 mM EDTA, 5 mM dithiothreitol (DTT), and 1% Triton X-100, pH 7.4. For CS activity,
tissue samples were homogenized in a buffer containing 20 mM HEPES, and 1 mM EDTA,
with 1% Triton X-100, pH 7.4. To avoid loss of enzyme activity during sample preparation,
procedures were performed on ice. Before analysis, homogenates were centrifuged at
13,000× g for 10 min at 4 ◦C. Maximum activity levels were determined spectrophoto-
metrically at 18 ◦C. L-LDH and HOAD enzyme activities were measured following the
oxidation of NADH at 340 nm (mM extinction coefficient = 6.22), and CS enzyme activities
were determined based on the reaction of free coenzyme A with DTNB (5.5 V dithio-bis
(2- nitrobenzoic acid) at 412 nm (mM extinction coefficient = 13.6). L-LDH was assayed in
a medium containing 0.15 mM NADH, 1 mM KCN, and 50 mM imidazole, pH 7.4. The
reaction was initiated by adding 1 mM pyruvate. CS was assayed in a medium containing
0.4 mM acetyl CoA, 0.25 mM DTNB and 75 mM Tris buffer, pH 8.0. The reaction was
initiated by adding 0.5 mM oxaloacetate (OAA). 3-hydroxyacyl CoA dehydrogenase was
assayed in a medium containing 0.15 NADH, 1 mM KCN, 1 mM EDTA, 50 mM Imidazole,
pH 7.4. The reaction was initiated by the addition of 2.0 mM acetoacetate. Enzyme activi-
ties are expressed as micromoles of substrate min/mg protein. Protein concentration in
supernatants was determined by using the BioRad protein assay (Bio-Rad Protein Assay
Kit I, 5000001, BioRad, Hercules, CA, USA).

2.5. Microbiological Analysis of Rearing Water

In order to examine the effect of P. inhibens on bacterial load in the water, serial ten-fold
dilutions of seawater from the rearing tanks from each sampling point were plated on
90 mm Petri dishes of Marine Agar (Difco Laboratories, Detroit, MI, USA) and thiosulfate-
citrate-bile salts-sucrose agar (TCBS). The Petri dishes were thereafter incubated at room
temperature (20 ◦C) for seven days in the dark, and the bacterial colonies were counted 1,
2, and 7 days after sampling.

2.6. Statistical Analysis

Protein expression data were tested for normality of distribution via the Shapiro–
Wilk test, while homogeneity of variance was assessed using Levene’s Test for Equality
of Variances. Changes in biochemical responses were tested for significance at the 5%
level by using a one-way Analysis of variance (ANOVA) (GraphPad Instat 3.0). Values are
presented as means ± S.D.

Principal components analysis (PCA) was conducted in the R package FactoMineR
to assess patterns of possibly correlated variables. Moreover, simple linear correlation
(Pearson’s test) analysis was employed for the estimation of significant correlations (at a 5%
level) between the biochemical data obtained in the present study (GraphPad Prism 5.0).

3. Results

According to the measured total body length, the larval notochord flexion was com-
pleted by the end of the experimental trials. Changes in the total body length of greater
amberjack from hatching day until metamorphosis (33 dph) are depicted in Figure 1.
Growth in total body length was significantly higher (p < 0.05) in greater amberjack reared
in the P. inhibens-enriched water at 6 dph and 33 dph. In contrast, lower total body length
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(p < 0.05) was evident in greater amberjack of the P. inhibens treatment at 24 dph compared
to the control.
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Figure 1. Temporal changes in total body length (mean values, N = 12) of greater amberjack (Se-
riola dumerili) from hatching day (D0) until metamorphosis (D33) in the absence and presence of
Phaeobacter inhibens in the rearing water. Asterisks (*) depict significant differences (p < 0.05) between
the treatments.

The probiotic P. inhibens as a water additive displayed similar effects on the phos-
phorylation ratios of IGF-1R and Akt, resulting in a significant activation (Figure 2). In
contrast, probiotic-enriched water provoked a significant reduction in the phosphorylation
ratio of all three MAPKs examined in the present study (Figure 3). The addition of the
probiotic in the rearing water did not affect Hsp60 expression in 33 dph greater amberjack.
However, probiotic addition significantly reduced Hsp90 levels, whereas Hsp70 levels were
significantly increased (Figure 4).

The addition of the probiotic did not alter caspase levels compared to the control
group. However, the probiotic significantly increased the Bax/Bcl-2 compared to the
control (Figure 5). Regarding autophagic indicators, while the addition of the probiotic
resulted in a statistically significant increase of ubiquitin conjugates levels and LC3 II/I ratio,
no changes were observed in the SQSTM1/p62 levels (Figure 6). AMPK phosphorylation,
the AMP/ATP ratio, and ATP and AMP levels were significantly reduced in the probiotic-
enriched water compared to the control (Figure 7).
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and P treatment, normalized with β-actin. Representative blots are shown. N = 6 preparations from
different animals. Significant differences (p < 0.05) are presented as *.
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Figure 3. Levels of phospho p38 MAPK/p38 MAPK (A), phospho p44/42 MAPK/p44/42 MAPK (B),
and phospho JNKs/JNKs (C) levels (mean ± std) in the absence (C) and presence (P) of Phaeobacter
inhibens in the rearing water of greater amberjack (Seriola dumerili). The quantitative histograms show
the changes in the above-mentioned indicators under C and P treatment, normalized with β-actin.
Representative blots are shown. N = 6 preparations from different animals. Significant differences
(p < 0.05) are presented as *.
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P treatment, normalized with β-actin. Representative blots are shown. N = 6 preparations from
different animals. Significant differences (p < 0.05) are presented as *.
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tors under C and P treatment, normalized with β-actin. Representative dots and blots are shown.
N = 6 preparations from different animals. Significant differences (p < 0.05) are presented as *.
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Figure 7. Levels of phospho AMPK/AMPK (A), AMP/ATP (B), ATP (C), and AMP (D) (mean ± std)
in the absence (C) and presence (P) of Phaeobacter inhibens in the rearing water of greater amberjack
(Seriola dumerili). The quantitative histograms show the changes in the above-mentioned indicators
under C and P treatment, normalized with β-actin. Representative blots are shown. N = 6 preparations
from different animals. Significant differences (p < 0.05) are presented as *.
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On the other hand, L-LDH, HOAD, and CS activity levels were significantly increased
in the probiotic treatment (Figure 8).
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and presence (P) of Phaeobacter inhibens in the rearing water of greater amberjack (Seriola dumerili).
Representative blots are shown. N = 6 preparations from different animals. Significant differences
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According to the Principal Components Analysis (PCA), PC1 explained 31.62% of the
variance (Figure 9). The biochemical variables that were positively correlated with PC1
scores were Hsp70, IGF-1R, Akt, Bax/Bcl-2, Ubiquitin, LC3 II/I, L-LDH, HOAD, and CS.
In contrast, Hsp90, Hsp60, p38 MAPK, p44/42 MAPK, JNKs, caspases, AMPK, AMP/ATP,
AMP, ATP, and SQSTM1/p62 were negatively correlated with PC1. Regarding PC2, which
explained 27.75% of the variance, the scores that were positively correlated to this principal
component were JNKs, IGF-1R, Akt, Bax/Bcl-2, AMP, ubiquitin, LC3 II/I, and L-LDH. In
contrast, Hsp70, Hsp90, Hsp60, p38 MAPK, p44/42 MAPK, caspases, AMPK, AMP/ATP,
ATP, SQSTM1/p62, HOAD, and CS were negatively correlated to PC2. The cumulative
value of PC1 and PC2 was 66.09%.
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The bacterial load in the rearing water, as determined by the total counts in colony-
forming units (CFU) per mL, was not significantly modified among the P. inhibens-enriched
tanks and the control tanks (p > 0.05) (Supplementary Material Figure S1). The number of
presumptive Vibrios, as determined by CFU counts in TCBS agar, was similar in both treatments
(p > 0.05), despite the higher numbers in the control tanks (Supplementary Material Figure S1).

4. Discussion

Growth in fish is highly reflected by the growth of skeletal muscle, the most abundant
tissue and main contributor to total body mass [63]. In contrast to higher vertebrates,
post-hatching muscle growth in teleost species is implemented by both hypertrophy (en-
largement of existing muscle fibers) and hyperplasia (the genesis of new myofibers) [64].
During a teleost life span, the equilibrium in dominance among the two aforementioned
processes is differentiated in a species-specific manner, where hypertrophy seems to consti-
tute the main growth mechanism towards the later developmental stages of juvenile and
adult, as has been previously demonstrated in Gilthead seabream, Sparus aurata, and white
seabass, Atractoscion nobilis [63,65].

4.1. Induction of Hypertrophic Growth via Activation of IGF/Akt Pathway

According to the present results, administration of the probiotic P. inhibens in the
rearing water promoted the activation of both IGF-1R and Akt, integral mediators of hy-
pertrophic growth [16]. Nutritional regulation of the IGF-1/PI3K/Akt pathway has been
previously reported in the skeletal muscle of fine flounder (Paralichthys adspersus) [66] and
rainbow trout (Oncorhynchus mykiss) [67,68], where a dietary trial of fasting and refeed-
ing led to PI3K/Akt inactivation and activation, respectively. The ameliorative effects of
probiotics in host nutrition have been extensively documented in several teleost species.
For instance, dietary supplementation of probiotics enhanced the activities of digestive
enzymes, such as lipase, amylase, alkaline phosphatase, pepsin, trypsin, and chymotrypsin,
and improved the growth performance in Caspian white fish (Rutilus frisii kutum) [69],
California halibut (P. californicus) [70], zebrafish (Danio rerio) [71], European seabass (Dicen-
trarchus labrax) [72] (and gilthead sea bream [73]. In addition, probiotics may beneficially
modulate gut microbiota composition and function, and ameliorate microbial balance,
which may further improve the physiological processes in the digestive system (reviewed
in [69,74]). Thus, the development of greater amberjack in rearing water supplemented
with P. inhibens may have favored the digestion and absorption of nutrients such as proteins
and, in consequence, altered cellular metabolic pathways.

Specifically, Akt activation observed herein, possibly due to digestion strengthening,
may mediate the nutrient- and IGF-induced signaling for stimulation of protein synthe-
sis via phosphorylation of the target of rapamycin (TOR), a downstream component of
the PI3K/Akt pathway (reviewed in [75,76]). Induction of protein synthesis through the
TOR pathway has been previously demonstrated in juvenile Jian carp (C. carpio var. Jian)
in response to fish meal substitution with yeast hydrolysate [77]. In contrast, dietary
supplementation of cottonseed meal protein hydrolysate at high levels repressed protein
synthesis due to inhibition of the TOR signaling pathway via activation of AMPK [78]. The
AMP-activated protein kinase is an energy-status sensor, which is activated responsively
to changes in the intracellular AMP/ATP ratio and, more precisely, under a low cellular
energetic regime in order to suppress energy-consuming processes such as protein synthesis
and to stimulate catabolic pathways for ATP regeneration in the cell [76,79]. Thereby, the
apparent low ratio of AMP/ATP and the inhibition of AMPK observed herein in greater am-
berjack reared in the probiotic-enriched water further confirms IGF/Akt/TOR-stimulated
protein synthesis, which may have been recruited for the hypertrophic growth during
metamorphosis. The present finding is consistent with previous studies that indicated
the prevailing hypertrophy in postnatal growth, including the metamorphosing stage, in
several teleosts [55,80,81]. However, in addition to the rapid growth of greater amberjack,
the IGF/Akt-mediated hypertrophy may be implicated in the metamorphic remodeling and
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reorganization of miscellaneous larvae tissues and structures, such as the gastrointestinal
tract as observed in other species [82], in order to functionally adapt to the juvenile form.

4.2. Inhibition of Downstream Components in the IGF/MAPK Signaling

In contrast to the IGF/Akt activation, P. inhibens as a water additive suppressed
components of the MAPK signaling pathway during greater amberjack metamorphosis. Ac-
tivation of the MAPK pathway via IGF-1 binding to the IGF-1R signals for cell proliferation
and hyperplastic growth [15]. Proliferative events have previously been demonstrated to be
crucial to the structural and functional development of tissues and organs during teleosts’
metamorphosis [83,84]. In regard to greater amberjack, Panteli et al. [85] indicated p38
MAPK, p44/42 MAPK, and JNK activation in the metamorphosing stage, thus indicating a
potential involvement in organogenesis and muscle growth. Herein, P. inhibens may have
acted as an inhibitor of the hyperplastic effect as observed by p38 MAPK, p44/42 MAPK,
and JNK inactivation compared to the greater amberjack of the control group. In line with
the present results, probiotic-supplemented diets increased the growth rate of Malaysian
Mahseer (Tor tambroides) juveniles mainly through the prevalence of hypertrophic growth
process in muscle fibers rather than hyperplasia [86].

The modification in MAPKs activation observed herein may be attributed to the
evident differences in the greater amberjack length among the two groups. Specifically,
according to the total length, the greater amberjack reared in the P. inhibens-enriched water
may have initiated the stage of metamorphosis earlier in comparison to the control group.
The relative contribution of hyperplasia in the growth procedure decreases with standard
fish length, as reported by Zimmerman and Lowery [87]. Therefore, the apparent decrease
in p38 MAPK, p44/42 MAPK, and JNK activation may indicate that P. inhibens favored a
more rapid growth, potentially leading greater amberjack to advanced development, where
the hyperplastic-facilitated procedures were mostly completed. Furthermore, hypertrophy
and hyperplasia function in a cyclic phase pattern during teleosts’ early ontogeny [80,87],
which reinforces the latter hypothesis. In this context, Weston et al. [88] suggested that p38
signaling is active early in myogenesis in order to prevent myocyte premature progression
and is subsequently suppressed during the elongation, polarization, aggregation, and
fusion of the differentiated cells. However, it is worth mentioning that fish species of large
final body size, such as greater amberjack, continue to rely to an extent on hyperplasia for
muscle growth in the adult phase [63].

Furthermore, consequent to the decrease in MAPKs phosphorylation, the expression level
of Hsp90 was downregulated in the greater amberjack reared under the P. inhibens regime. As
previously mentioned, MAPKs are regulators involved in Hsps induction [20,21]. According
to previous studies, the metamorphosis of greater amberjack [85] and flatfish Senegalese
sole (Solea senegalensis Kaup) [23] was accompanied by a decrease in Hsp90 expression
levels. However, P. inhibens as a water additive induced Hsp70 expression in this instance,
which was also evident in gilthead seabream following probiotics administration [89].
On the contrary, decreased Hsp70 levels were observed in teleost species under probiotic
treatment [39,90,91]. Changes in Hsps induction due to probiotics vary according to
miscellaneous factors such as fish species, development stage, bacterial strain and dose,
supplementation mode, and rearing duration and conditions [90]. Molecular chaperones are
involved in the regulation of signal-transduction pathways [23], and thus, the recruitment
of such proteins is essential in several developmental stages, including metamorphosis for
tissue resorption and rearrangement [92]. Upon entering the metamorphic phase, silver sea
bream (Sparus sarba) exhibited induction of both Hsp70 and Hsp90, therefore indicating
involvement in the larvae to juvenile transition processes [93]. However, Chung-Davidson
et al. [94] demonstrated that Hsp90 inhibition facilitates the degeneration stage of the gall
bladder during the liver metamorphosis of sea lamprey. Therefore, both up-regulation
and down-regulation of Hsps due to the addition of P. inhibens may be deemed crucial
in proper greater amberjack metamorphosis and accelerated growth, and hence, further
investigations are required to clarify their distinct role in the organism’s development.
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4.3. P. inhibens-Induced Developmental Cell Death

The commencement of metamorphosis in vertebrates is associated with the recruit-
ment of extensive programmed cell death processes in order to facilitate the deletion of
larval cells and tissues for the structural, morphological, and functional remodeling of the
juveniles (reviewed in [26,30]). For instance, during the initial stage of the metamorphosis
of the Japanese flounder (Paralichthys olivaceus), pro-apoptotic signals were evident in
the frontal bone, and ethmoid and trabecular cartilage, which may have subsequently
contributed to eye migration [95,96]. In addition, Gao et al. [97] demonstrated that the
autophagic machinery facilitates eye migration in the aforementioned species through
cell death in the orbital tissue. The addition of P. inhibens in the rearing water resulted
in the induction of both apoptosis and autophagy in greater amberjack, as observed by
the increased Bax/Bcl-2 and LC3 II/I ratios. The action of induced apoptosis was demon-
strated in teleost cell lines following the addition of cytoplasmic extracts obtained from
the probiotic Lactobacillus delbrüeckii subsp. lactis [98]. As indicated in the present results,
probiotic treatment induced autophagy in zebrafish follicles, as observed by the increased
autophagosomes and LC3-II protein levels, which may participate in ubiquitinated protein
degradation [99]. Mobilization of apoptotic cell death observed herein may indicate the
increased structural processes due to the potential accelerated growth. In specific, under
the P. inhibens regime, greater amberjack seems to exhibit advanced developmental progress
compared to the control.

However, probiotic-induced autophagy may subserve a dual role in greater amberjack
metamorphosis. In addition to the aforementioned role in larval to juvenile reconstruction,
autophagy may have also been employed to secure energy and nutrients required for the
energetically demanding processes of metamorphosis and growth [29,31,100]. The latter
is further supported by the increased activities of intermediary metabolism enzymes in
the greater amberjack of the P. inhibens treatment despite the AMPK inhibition. In line
with the above, probiotic-enhanced nutrient metabolism and growth performance was
similarly suggested by Yi et al. [101], who demonstrated an up-regulation of genes related
to carbohydrate metabolism and growth, including the IGF-1 gene, in zebrafish fed a diet
supplemented with the potential probiotic Chromobacterium aquaticum. Skeletal muscle
growth depends on protein anabolism [102], an energy-consuming procedure, and thus
additional energy may be required by the greater amberjack reared under the P. inhibens
regime, which also displayed higher body length.

5. Conclusions

Administration of probiotic Phaeobacter inhibens as water additive exerted a contrary
indirect regulatory role on IGF-I/Akt and IGF-I/MAPK signaling in the metamorpho-
sis of greater amberjack. Specifically, the potentially higher nutrient supply due to the
P. inhibens-enhanced digestion triggered the activation of the IGF-I/Akt pathway, while
downstream components of the IGF-I/MAPK, including p38 MAPK, p44/42 MAPK, and
JNK exhibited inhibition (Figure 10). Moreover, inhibition of AMPK indicates that an-
abolic processes, such as protein synthesis, are active and facilitate hypertrophic growth.
Induced programmed cell death may have been recruited in the probiotic treatment for
the deletion and renovation of cells and tissues. According to the present results, it can
be assumed that under the influence of the probiotic treatment, an apparent increase in
the rate of development and muscle hyperplasia occurred earlier, thus leading to the
subsequently enhanced hypertrophy observed. It should be emphasized that larval mus-
cle hyperplasia and hypertrophy may affect the post-metamorphosis muscle cellularity,
and the relative contributions of these two growth mechanisms exert long-term effects
on muscle cellularity and growth of reared fish [103,104]. In conclusion, P. inhibens as a
water additive seems to exert ameliorative effects in the development of reared greater
amberjack. However, both developmental processes and responses to probiotics depend
highly on species; thus, more species-oriented research is required to further explore the
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application of P. inhibens in the aquaculture industry, as well as the long-term change effects
in hyperplasia and hypertrophy.
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