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ABSTRACT
The fanmussel Pinna nobilis Linnaeus, 1758 is an endemic species of theMediterranean
Sea, protected by international agreements. It is one of the largest bivalves in the
world, playing an important role in the benthic communities; yet it has been recently
characterized as Critically Endangered by the IUCN, due to mass mortality events.
In this context, the assessment of the genetic variation of the remaining P. nobilis
populations and the evaluation of connectivity among them are crucial elements for the
conservation of the species. For this purpose, samples were collected from six regions
of the Eastern Mediterranean Sea; the Islands of Karpathos, Lesvos and Crete; the
Chalkidiki and Attica Peninsulas; and the Amvrakikos Gulf. Sampling was performed
either by collecting tissue from the individuals or by using a non-invasive method,
i.e., by scraping the inside of their shells aiming to collect their mucus and thus avoid
stress induction to them. Conventional molecular techniques with the use of the COI
and 16S rRNA mitochondrial markers were selected for the depiction of the intra-
population genetic variability. The analyses included 104 samples from the present
study and publicly available sequences of individuals across the whole Mediterranean
Sea. The results of this work (a) suggest the use of eDNA as an efficient samplingmethod
for protected bivalves and (b) shed light to the genetic structure of P. nobilis population
in the Eastern Mediterranean; this latter knowledge might prove to be fundamental for
the species conservation and hence the ecosystem resilience. The haplotype analyses
reinforced the evidence that there is a certain degree of connectivity among the distinct
regions of the Mediterranean; yet there is evidence of population distinction within
the basin, namely between the Western and the Eastern basins. The combination of
both genetic markers in the same analysis along with the inclusion of a large number
of individuals produced more robust results, revealing a group of haplotypes being
present only in the Eastern Mediterranean and providing insights for the species’ most
suitable conservation management.
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INTRODUCTION
During the autumn of 2016 a massive mortality phenomenon was observed on the
Western Mediterranean populations of Pinna nobilis, the largest endemic bivalve of the
Mediterranean Sea (Darriba, 2017). The mass mortality events (MME) reached quickly the
Eastern Mediterranean Sea (Katsanevakis et al., 2019). Although several pathogens have
been proposed as the MME agents (Catanese et al., 2018; Carella et al., 2019; Carella et al.,
2023; Panarese et al., 2019), the most likely one is the protozoan Haplosporidium pinnae,
which is considered to affect the digestive gland of the animal, resulting in stress, starvation
and in a general dysfunction and finally death of the organism (Box, Sureda & Deudero,
2009; Grau et al., 2022). Based on all the above, the species status in the IUCN red list
changed to Critically Endangered (CR) (Kersting et al., 2019).

The decline of the pen shell’s population was known several years before the MME
(Centoducati et al., 2007) due to threats such as the coastal construction activity, the
degradation of its habitats, the anchoring—especially at touristic hotspots, the wave
action, the byssus exploitation for production of sea silk and the illegal trawling activity
(Hendriks et al., 2013; Basso et al., 2015). Therefore, a series of regulations were established
aiming to protect this species and ensure its survival; national legislation and international
conventions have been in force for the past decades, such as the Barcelona Convention for
the Protection of the Marine Environment and the Coastal Region of the Mediterranean
and the Council Directive 92/43/EEC on the Conservation of natural habitats and of wild
fauna and flora (Annex IV). Nevertheless, the effectiveness of those measures was argued,
since P. nobilis was still subject to illegal fishing for personal or commercial consumption
or for decorative purposes (Katsanevakis et al., 2011).

Undoubtedly, P. nobilis is a beneficial species for the benthic communities for a number
of reasons, since it offers various ecosystem services. As a filter feeder, it filters large
amounts of water contributing to seawater clarity (Basso et al., 2015), a process that
benefits the meadows of the cohabitant species Posidonia oceanica and/or Cymodocea
nodosa (Trigos et al., 2014). Its large valves provide a hard substrate within a sandy area for
many sedentary organisms, so it is fairly considered as an ecosystem engineer (Rabaoui
et al., 2015). It sometimes also cohabits with the crustaceans Pontonia pinnophylax or
Nepinnotheres pinnotheres (Hassine, Zouari & Rabaoui, 2008; Akyol & Ulaş, 2015), thus
increasing even more the complexity and species richness of the community in which it
lives. Recently, due to the attention it has attracted, P. nobilis has been characterized as a
flagship species (Scarpa et al., 2020). Without a doubt, this recognition is significant not
only for the conservation of the species itself and the ecosystem it is associated with, but
also for raising public awareness about marine environmental issues in general (Polgar &
Jaafar, 2018).
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P. nobilis has been the focus of numerousmolecular studies conducted in various regions
of the Mediterranean Sea over the past decades. A study by Katsares et al. (2008) revealed
low genetic differentiation among the examined populations in Thermaikos Gulf (Greece),
possibly attributed to the species’ pelagic larval stage and the resulting high gene flow.
Similar findings were observed in studies conducted along the Tunisian coasts (Rabaoui
et al., 2011), which also indicated the absence of a genetic barrier between the Aegean Sea
and the Tunisian coasts. A study across a wider area of the Western Mediterranean by
Sanna et al. (2013) provided additional insights on P. nobilis populations; it was the first
one to include a considerable number of samples and, actually indicated a distinct genetic
structure between the Western Mediterranean (Sardinia, Corsica, Sicily) and the Eastern
Mediterranean (Aegean Sea and Tunisian coasts). Furthermore, it identified the Venetian
Lagoon population from the northern Adriatic Sea as a potentially diverging population.
Interestingly, two other areas in the central Adriatic Sea, the natural marine parks of Mljet
and Telascica, showed greater similarity to the Western Mediterranean samples than to
those from Venice (Ankon, 2017).

In 2015, microsatellite markers were used for the first time for P. nobilis samples from
the Balearic coasts (González-Wangüemert et al., 2015) suggesting their usefulness for the
genetic diversity and connectivity assessments. Wesselmann et al. (2018) combined both
mitochondrial and microsatellite markers along with lagrangian simulations to suggest a
series of insightful conclusions for the populational genetics of P. nobilis with the upper
aim of enhancing its conservation. In the Gulf of Lion (North-Western Mediterranean
Sea) P. nobilis populations exhibited high genetic diversity across various locations,
although there was no significant genetic differentiation among these populations, thus
indicating a genetically homogeneous population spanning the entire coastline (Peyran et
al., 2021). Clearly, the small geographic scale surveys seem to indicate populational genetic
homogeneity; however, on a largerMediterranean scale, where a greater number of samples
are included, the distinction becomes more evident.

The majority of these publicly available sequences are partial sequences of the
mitochondrial DNA, and for the most part COI and 16S rRNA genes. Even though the
mtDNA is more widely used for phylogeographic purposes, it can reveal a significant level
of differentiation among and within populations, as has been shown in several studies for
marine bivalves (Parker et al., 1998; Matsumoto, 2003; Wood et al., 2007; Feng et al., 2011;
Fernández-Pérez et al., 2018; Ramadhaniaty, Setyobudiandi & Madduppa, 2018). It should
also be noted, that mtDNA in certain bivalves, such as Donax trunculus (Theologidis et al.,
2008) and Mytilus spp. (Zouros, 2013), has a biparental inheritance which, undoubtedly,
affects population diversity estimates based on it.

The aim of the present study was to (a) investigate the genetic diversity of the P. nobilis
populations in an area of the Eastern Mediterranean Sea that has not been investigated to
date, and (b) compare it with similar studies from the whole Mediterranean in an attempt
to provide further insights into population structuring of this critically endangered species,
which will offer a good estimation on the fitness and diversity of the Greek populations.
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Sampling Sites
Vourvourou [2]

Lesvos [15]

Amvrakikos [16]

Attica [8]

Karpathos [60]

Crete [3]

Figure 1 Map of the sampling locations of the current study (numbers in square brackets indicate the
number of samples). Credits: Giorgos Chatzigeorgiou. CC0. Map created using the Free and Open Source
QGIS.

Full-size DOI: 10.7717/peerj.16491/fig-1

MATERIALS AND METHODS
Sampling area
For the purpose of the study 105 samples were collected within the period of August
2018–April 2021 from six locations of the Eastern Mediterranean Sea and particularly from
the Islands of Karpathos, Lesvos and Crete, Vourvourou (Chalkidiki peninsula), Attica
Peninsula, and the Amvrakikos Gulf (Fig. 1, Table S1). Depth at each collection point
was recorded by the divers using a diving computer. Samples from Crete, Chalkidiki and
Attica Peninsulas and Amvrakikos Gulf were collected under a relevant research permit
(175828/2195 of 14/11/2018) issued by the Greek Ministry of Environment and Energy,
General Directorate for the Forests & Forest’s Environment, Department of Wildlife and
Hunting Management. Samples from Karpathos were collected under research permit
171978/1203 of 18/07/2018 issued by the Greek Ministry of Environment and Energy,
General Directorate for the Forests & Forest’s Environment, Department of Wildlife and
Hunting Management.

D. Karagiannis of the National Reference Laboratory for Mollusc Diseases (Greek
Government) provided the samples MYT1-MYT9 from Lesvos, which were collected
under a permit from local authorities (MEE/GDDDP89926/1117). Samples TS1–TS6 from
Lesvos were collected under a permit by the Department of Agriculture and Fisheries,
Decentralized Administration of the Aegean (No. 52321/6-9-2018).
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eDNA sampling
The samplingmethod for Karpathos’ samples was non–lethal, non-invasive and low impact
aiming at theminimization of the disturbance towards the bivalves, since the tissue removal
may provoke stress and make the animal more susceptible to diseases. Initially, a rod of
0.5 cm diameter was placed at the opening of the valves of each animal by the SCUBA
divers in order to keep them slightly open, carefully taking into account the fragility of the
shell’s outermost part. Consequently, a sampling brush, resembling a buccal swab was used
(Fig. S1) to scrape tissue remnants and mucus from the interior of the valves. The sampling
brushes (one for each individual) were placed in small zip bags and stored at −20 ◦C until
further processing. Additionally, the shells’ width and height (above and below sediment)
were recorded by the divers using a caliper.

Tissue sampling
All the other samples were collected from sacrificed individuals under research permits,
since the initial aim of the sampling was the investigation of the infection of P. nobilis from
the parasite H. pinnae. Specifically, 50–100 mg of different tissues (mantle, gills, digestive
gland) from each individual were removed, preserved in absolute ethanol and stored at
4 ◦C until further processing. As previously, the shells’ width and height were recorded by
the divers, for the majority of the individuals.

DNA extraction
DNA was extracted according to the protocol of Sambrook, Fritsch & Maniatis (1989),
and as previously described in Grau et al. (2022), both from the brushes as well as from
the tissues. Specifically, in the case of the latter, small pieces of the collected tissues were
chopped with sterile scissors; triplicate extractions were performed for each tissue. Each
replicate sample was washed with 800 µl of sterile distilled water for 15 min, following
centrifugation at 13,000 g for 2 min, as in Darriba (2017). The supernatant was removed
and the wash was repeated. Afterwards, each sample was washed with 600 µl of lysis buffer
(0.5 M Tris, 0.1 M EDTA, 2% SDS, ph 8.8) for 15 min, following centrifugation at 13,000
g for 2 min and removal of the supernatant. The washes with the lysis buffer were repeated
twice. The pellet was mixed with 600 µl of lysis buffer and 6 µl of proteinase K (20 mg/ml)
and incubated at 55 ◦C overnight. DNA was extracted by precipitation with isopropanol
and ammonium acetate (5 M) (Sambrook, Fritsch & Maniatis, 1989). In the final step of the
DNA extraction protocol, i.e., the elution of the DNA pellet, replicate samples were pooled
and their concentration was measured in a NanoDrop 1,000 spectrophotometer (Grau et
al., 2022); DNA concentrations are provided in Table S1.

PCR amplifications
For the PCR amplification of the tissue samples, no specific tissue was chosen but rather a
mixture of all the extracted DNAs, for each individual, in similar concentrations. Initially
PCR amplifications were performed for the COI and 16S rRNA genes with previously used
primers and conditions (Folmer et al., 1994; Sanna et al., 2013; Sanna et al., 2014; Leray et
al., 2013); however, the amplifications were not successful. Therefore, new primers were
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Table 1 Primers used in the present study.

Target gene Forward primer (5′–3′) Reverse primer (5′–3′) Amplification
length
(bp)

Reference

5′- CAGCTTTTGTAGAGGGCG - 3′ 5′- CCAAATTACACCAGTCAGCC - 3′ 722 this study
5′- GATCCGGGATAGTAGGTAC - 3′ 5′- CMGGATGACCAAARAACC - 3′ 645 this studyCOI

5′- ATGGCYGTCGATTTAGC - 3′ 5′- CMGGATGACCAAARAACC - 3′ 298 this study
LCO 1490 HCO 2198 710 Folmer et al. (1994)
mlCOIintF jgHCO2198 313 Leray et al. (2013)COI

5′- GGTTGAACTATHTATCCNCC - 3′ 5′- GAAATCATYCCAAAAGC - 3′ 338 Sanna et al. (2013)
16S rRNA 5′- GGTAGCGAAATTCCTAGCC - 3′ 5′- AAKGGTSGAACAGACCC - 3′ 408 this study
16S rRNA 5′- TGCTCAATGCCCAAGGGGTAAAT - 3′ 5′- AACTCAGATCACGTAGGG - 3′ 450 Sanna et al. (2013)
nad3 5′- CCTTATGARTGYGGBTTT - 3′ 5′- TCHATAAGYTCATARTAYARCCC - 3′ 203 Sanna et al. (2014)

designed (Table 1) based on the available P. nobilis sequences in GenBank (Sayers et al.,
2023).

Each PCR contained 2 µl of DNA template (about 20 ng/ul), 4 µl of 5X KAPA HiFi
Fidelity Buffer (Roche Molecular Systems, Inc., Basel, Switzerland), 1 µl of each primer
(10 um), 0.8 µl of dNTPs (10 mM each), 1 µl of KAPA HiFi HotStart DNA Polymerase
(1 U/uL) (Roche Molecular Systems, Inc., Basel, Switzerland) in a total volume of 20 ul.
Amplifications were performed at a BioRad T100 thermal cycler. The PCR protocol was
the same for the two genes; namely a denaturation step at 95 ◦C for 5 min followed by 35
cycles of 98 ◦C for 20 s, 53 ◦C for 30 s, 72 ◦C for 30 s and a final extension step at 72 ◦C for
5 min.

Amplification of the 16S rRNA yielded in some cases a double PCR product; in this
case, purification of both the PCR products was carried out from a 2% agarose gel using
the NucleoSpin Gel and PCR Clean-up (MACHEREY-NAGEL, Allentown, PA, USA). For
the COI amplicons, a sodium acetate-absolute ethanol cleanup protocol was conducted.
All purified PCR products were sequenced in an automated sequencer ABI 3730.

Analyses
The ABI chromatograms were checked and corrected by eye using the BioEdit Sequencing
Alignment Editor software (Hall, 2011) andMEGA X sequence analysis software (Kumar et
al., 2018). 16S rRNA sequences, COI sequences and concatenated 16S rRNA-COI sequences
(following the approach of Sanna et al., 2013) from the present study were aligned with the
Clustal W package (Thompson, Higgins & Gibson, 1994) embedded in BioEdit and MEGA
X. In addition, publicly available sequences of the corresponding genes (COI and 16S rRNA)
of P. nobilis, for which sample location information was available, were also downloaded
from GenBank and added to the aforementioned alignments (Table S2; Fig. S2). However,
it should be highlighted that each survey—where the sequences derived from—aimed at a
distinct gene region, and this resulted in a small overlap when the sequences were aligned
all together. Furthermore, some surveys did not include both of the genes amplified in
the present study, i.e., they focused either only on the 16S rRNA gene or on the COI gene

Sarafidou et al. (2023), PeerJ, DOI 10.7717/peerj.16491 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.16491#supp-9
http://dx.doi.org/10.7717/peerj.16491#supp-2
http://dx.doi.org/10.7717/peerj.16491


Table 2 Genetic diversity estimates.

Dataset N Bp h Hd Ps Pi

1 16S rRNA-COI Greece (Eastern Mediterranean) 100 982 34 0.91± 0.017 45 0.00304± 0.00029
2 16S rRNA-COI Central, Western and Eastern

Mediterranean Sea
294 714 104 0.961± 0.005 72 0.00511± 0.00019

3 COI Mediterranean Sea 450 243 48 0.652± 0.024 36 0.00475± 0.00028

Notes.
N, number of sequences; Bp, Base pairs; h, number of haplotypes; Hd, Haplotype diversity; Ps, Polymorphic sites; Pi, Nucleotide diversity.

(Fig. S2). For these reasons, it was not possible to create only one dataset that could include
all this information and therefore three datasets were created instead (Table 2).

Phylogenetic trees were constructed using the IQ-TREE web server (Trifinopoulos et
al., 2016) with automatic identification of substitution model and FreeRate heterogeneity,
100 bootstraps, 1,000 replicates of the SH-aLRT branch test and approximate Bayes test.
DnaSP software (Rozas et al., 2017) was used to estimate the following variables: number
of haplotypes (h), haplotype diversity (Hd), number of polymorphic loci (Ps), nucleotidic
diversity (Pi) and Fst values. With the use of DnaSP .nex archives (nexus format) median
joining haplotype networks were generated in PopART (Leigh & Bryant, 2015).

A map showing the distribution of the most abundant 16S rRNA-COI haplotypes
in the different locations was generated using ggplot2 (v. 3.4.2) (Wickham, 2016) and
scatterpie (v.0.2.1) (Yu, 2023). Populations were defined based on the Spalding et al. (2007)
ecoregions, except in the case of the Aegean Sea where the ecoregion was divided into North
and South Aegean Sea. FST values between populations were calculated using the adegenet
(v.2.1.7) (Jombart, 2008), pegas (v.1.2) (Paradis, 2010) and hierfstat packages (v.0.5.11)
(Goudet & Jombart, 2022). The effect of the population on genetic differentiation was tested
with the function test.g of the hierfstat package. AMOVA (Analysis of Molecular Variance)
was performed to determine genetic variation between populations using poppr (v.2.9.4)
(Kamvar, Tabima & Grünwald, 2014) and pegas packages. Isolation by distance was tested
using a Mantel test between a matrix of genetic distances (calculated using Edwards’
distance) and a matrix of geographic distance between populations (calculated using
Euclidean geographic distances) using adegenet and MASS (v.7.3.57) (Venables & Ripley,
2002) packages. Discriminant analysis of principal components (DAPC) and principal
component analysis (PCA) were performed with the adegenet package. hierBAPS was also
performed as a method for hierarchical clustering of the sequence data to reveal nested
population structure, with the use of rhierbaps (v.1.1.4) (Cheng et al., 2013), phytools
(v.1.5.1) (Revell, 2012) and ggtree (v.3.2.1) (Yu et al., 2017) packages. Plots were created
using ggplot2. All the aforementioned analyses were performed in R version 4.1.1 (R Core
Team, 2021).

The map of the sampling sites was generated with the QGIS software. Raw DNA
sequences from the present study are available from the European Nucleotide Archive
(ENA) (Burgin et al., 2023) at http://www.ebi.ac.uk/ena/data/view/OX406989-OX407068
(16S rRNA) and http://www.ebi.ac.uk/ena/data/view/OX407172-OX407248 (COI).
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10 samples

1 sample

Karpathos
Amvrakikos
Lesvos
Attica
Crete
Vourvourou
Aggelochori
Epanomi
Chios
Korinthiakos

Figure 2 Haplotype network for the 16S rRNA-COI dataset of Greece (EasternMediterranean). Circle
size depicts the haplotype frequency; color coding according to sample location; details on the number of
samples, sequence size and number of haplotypes are available in Table 2.

Full-size DOI: 10.7717/peerj.16491/fig-2

RESULTS
When examining the shell’s dimensions, the relationship between the height above sediment
with the height buried inside the sediment was quite linear for all the study areas (Fig. S3A;
Table S3). However, in the regression between the total height and thewidth, the population
fromLesvos followed a different pattern (Fig. S3B; Table S3). In addition, when theP. nobilis
individuals are classified into age classes based on the total shell’s height (Butler, Vicente &
de Gaulejac, 1993; Richardson et al., 1999; Tempesta, Ciriaco & Del Piero, 2013), it is evident
that juveniles were only present in Karpathos and Amvrakikos, while the majority of the
individuals were adult juveniles (Fig. S4).

Overall, 36 (out of 60) amplifications of eDNA samples were successful for the 16S
rRNA and 33 (out of 60) for the COI gene. All the tissue samples provided successful
amplifications for both genes. The first dataset included 100 sequences (N) (concatenation
of COI and 16SrRNA genes) of 982 bp from the Greek coastline (Eastern Mediterranean
Sea). It revealed 34 haplotypes and 45 polymorphic sites. The haplotypic diversity was high
(Hd: 0.91± 0.017) while the nucleotide diversity was low (Pi: 0.00304± 0.00029) (Table 2).
The haplotype network had a star-like shape, with two central haplotypes from which all
the other haplotypes derive (Fig. 2). The regions of Epanomi and Aggelochori from the
North Aegean Sea along with Chios Island and Korinthiakos Gulf formed a distinct group
compared to all the other regions. A similar indication of differentiation appeared also in
the South Aegean with samples mainly from Karpathos being distinct from the other ones.
AMOVA showed that there is a very small variation (0.52%) between the populations but
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it is much higher, and statistically significant, between the samples (82.02%) (Table 3).
FST values were quite low (Table S4), which also implied that there is no differentiation
among the populations. When we tested for isolation by distance with the Mantel test,
there was no clear isolation by distance pattern (Observation: −0.9748659; Simulated
p-value: (1); however, in the scatterplot between the genetic distances and the geographic
distances, two clouds of points appeared indicating that there might be distant patches
(Fig. S5A). DAPC, after a-score optimization (10 PCs retained), showed that there are a few
admixtured individuals (Fig. S5B) but overall DAPC classification is consistent with the
original populations; reassignment to actual population was higher for the South Aegean
Sea (>80%), followed by the North Aegean Sea (>60%) and the Ionian Sea (>40%). PCA
also showed that the population clusters were not very clear (Fig. S5C). hierBAPS clustered
the sequences into two main clades and two reduced ones (cluster log marginal likelihood:
−444.275995882745) (Fig. S5D), which did not correspond to the geographic location
of the populations. Interestingly, the fourth clade contained only three individuals from
Epanomi, with the rest of them being found in clades 1 and 2.

The second dataset included 294 concatenated sequences (N) of 714 bp from the
Western and Eastern Mediterranean Sea (COI and 16SrRNA). It revealed the highest
number of haplotypes (104) and polymorphic sites (72) among all datasets. The haplotypic
diversity (Hd: 0.961 ± 0.005) was high and the nucleotide diversity was moderately high
(Pi: 0.00511 ± 0.00019) (Table 2). The haplotype network showed a clear differentiation
among the three subregions; Adriatic Sea, Western and EasternMediterranean Sea (Ionian,
North Aegean, South Aegean, Levantine) (Fig. 3). A few central, highly frequent haplotypes
from the Western Mediterranean Sea split into many closely related unique haplotypes
in a star-like scheme. The same structure was observed in the haplotypes that occurred
in the Eastern Mediterranean although there were a few that were closer to the Western
Mediterranean ones. The Venetian lagoon samples (Adriatic Sea), although distinct,
showed a higher relatedness to the Western Mediterranean samples than the Eastern ones,
thus strengthening the genetic structuring between Western and Eastern Mediterranean.
When the 19 most abundant haplotypes were plotted (67% cumulative abundance), it
was again evident that there is a population differentiation across the Mediterranean Sea
(Fig. 4). AMOVA also showed a high variation between the populations (25.07%), but
again a higher one between the samples (67.33%), with both values being statistically
significant (Table 3); however, FST values were quite low (Table S5). When we tested
for isolation by distance with the Mantel test, there was no clear pattern (Observation:
0.05073212; Simulated p-value: 0.401) and there was one single consistent cloud of point in
the scatterplot, without discontinuities indicating patches (Fig. S6A). DAPC, after a-score
optimization (12 PCs retained), showed that there are again a few admixtured individuals
(Fig. S6B) but overall DAPC classification is consistent with the original populations;
reassignment to actual population reached 100% for the South Aegean Sea population and
was higher than 40% for all populations, except for the Ionian Sea one (>10%). PCA also
did not reveal a clear clustering (Fig. S6C). hierBAPS clustered the sequences into twomain
clades and a third, more reduced one (cluster logmarginal likelihood:−1485.08119596456)
(Fig. S6D), which again was not according to geographic location.
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Table 3 AMOVA table using genetic distances based on haplotype frequencies of the P. nobilis populations.

Scenarios Source of variation Degrees of
freedom

Sum of
squares

Components
of covariance
(Sigma)

Variation
(%)

P-value

Between populations 2 18.51356 0.01582342 0.52 0.28

Between samples within population 9 57.22781 0.53133279 17.46 0.01
Greece (Eastern
Mediterranean)
(16S rRNA-COI)

Ionian Sea (Amvrakikos, Korinthiakos) - North Aegean Sea (Lesvos, Aggelochori, Epanomi,
Chios, Vourvourou) - South Aegean Sea (Attica, Diafani, Tristomo, Astakida, Crete)

Within samples 88 219.5786 2.49521173 82.02 0.01

Between populations 5 213.2511 0.8919529 25.07 0.01

Between samples within population 13 77.38444 0.2702837 7.60 0.01
Central, West-
ern and Eastern
Mediterranean
Sea (16S rRNA-
COI)

Adriatic Sea (Venice) - Ionian Sea (Amvrakikos, Korinthiakos, Sicily East) - North Aegean Sea
(Lesvos, Aggelochori, Epanomi, Chios, Vourvourou) - South Aegean Sea (Attica, Diafani, Tris-
tomo, Astakida, Crete) - Levantine Sea (Cyprus) - Western Mediterranean (Italy, Sicily West,
Corsica, Sardinia) Within samples 275 658.6637 2.3951407 67.33 0.01

Between populations 6 32.72616 0.09382413 9.56 0.01

Between samples within population 19 20.06477 0.01168851 1.19 0.06Mediterranean
Sea (COI)

Adriatic Sea (Venice) -
Ionian Sea (Amvrakikos, Korinthiakos, Sicily East) -
North Aegean Sea (Lesvos, Aggelochori, Epanomi, Chios, Vourvourou) -
South Aegean Sea (Attica, Diafani, Tristomo, Astakida, Crete) - Levantine Sea (Cyprus) -
Western Mediterranean (Bizerta Lagoon, Italy, Sicily West, Corsica, Sardinia, France, Spain) -
Tunisian Plateau/Gulf of Sidra (El Ketef, Stah Jaber, Kerkennah Island, El Bibane Lagoon)

Within samples 423 370.5275 0.87595168 89.26 0.01
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Figure 3 Haplotype network for the 16S rRNA-COI dataset of the Central, Western and Eastern
Mediterranean Sea. Circle size depicts the haplotype frequency; color coding according to sample
location; details on the number of samples, sequence size and number of haplotypes are available in
Table 2.

Full-size DOI: 10.7717/peerj.16491/fig-3

Figure 4 Map showing the distribution of the most abundant haplotypes of dataset 2 (16S rRNA-COI
Central, Western and EasternMediterranean Sea). Credits: Christina Pavloudi. CC0. Map created us-
ing R.

Full-size DOI: 10.7717/peerj.16491/fig-4

The third dataset included 450 sequences (N) of the COI gene (243 bp) again from
the whole Mediterranean Sea. It revealed 48 haplotypes and 36 polymorphic sites. The
haplotypic diversity (Hd: 0.652 ± 0.024) was lower than the one observed in the other
two datasets and the nucleotide diversity was moderately high (Pi: 0.00475 ± 0.00028)
(Table 2). AMOVA showed a low, but statistically significant, variation between the
populations (9.56%) and a much higher variation between the samples (89.26%), again
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statistically significant (Table 3). FST values were again quite low (Table S6). Again, there
was no clear pattern of isolation by distance (Observation: 0.2545314; Simulated p-value:
0.213) and one single consistent cloud of points in the scatterplot (Fig. S7A). DAPC, after
a-score optimization (nine PCs retained), showed a very similar pattern for most of the
individuals (Fig. S7B). Reassignment to actual population was very low for the Ionian Sea,
North Aegean Sea and Tunisian Plateau/Gulf of Sidra (<10% in all cases); however, it was
>40% for the Western Mediterranean and Levantine Sea populations. PCA again did not
reveal a clear clustering (Fig. S7C) and hierBAPS clustered the sequences into three clades,
as for the second dataset (cluster log marginal likelihood:−1013.22748489699) (Fig. S7D);
the third smaller clade, contained sequences from diverging individuals both from the
Eastern as well as from the Western Mediterranean.

DISCUSSION
Morphology of pen shells
As it has been reported, growth rates of P. nobilis are variable based on the availability
of zooplankton, which is reflected in the location of the individuals (Richardson et al.,
1999). In addition, it has been estimated that the average growth rate for juveniles is 0.28
mm per day, i.e., ∼10 cm per year (Hendriks et al., 2012). According to the distribution
of total height of individuals in the studied populations, more than half of our samples
are categorized as adult juveniles, and should probably be 2–8 years old (Richardson et
al., 1999). Lack of juveniles in all populations except of the population in Karpathos and
Amvrakikos, may have been related to the infection of the populations and the subsequent
MME.

Population genetic structure
This study contributes significantly to the knowledge of P. nobilis genetic structure as
it provides data from regions of the Greek coastline that had not been sampled before.
Currently, to the best of our knowledge, the only population with living individuals of
P. nobilis is the one in Amvrakikos Gulf; all the other sampled locations have no individuals
surviving the MME.

The results of this study also indicate that within the Eastern Mediterranean Sea there
is no differentiation among the different geographic regions that were sampled implying a
high connectivity among them, i.e., the isolation by distance of the populations of North
and South Aegean Sea, as well as of Ionian and Aegean Sea is not relevant. Similar results
have been found for the horse mussel (Modiolus barbatus), a fact which was attributed to
the very long (up to 6 months) pelagic larval stage of the species (Giantsis et al., 2019),
which, however, exceeds by far that of P. nobilis. A similar high connectivity trend was
also indicated for the Western Mediterranean P. nobilis populations; this could suggest
the possible occurrence of ecological/biological traits, which are typical of the species in
the whole Mediterranean basin and affect the species’s population structuring. Another
potential explanation for the lack of differentiation between the Eastern Mediterranean Sea
populations could be transplantations of individuals. Transplantations have been suggested
to be responsible for the absence of geographic structure of Mytilus galloprovincialis
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populations in the Aegean Sea (Giantsis, Kravva & Apostolidis, 2012). This might have been
the case also for P. nobilis, as transplantations had been proposed as a conservation action
for the protection of the species (Katsanevakis, 2016; Acarli, 2021), although they were
most likely performed only on a local scale and, thus, they should not have influenced
the genetic structure of P. nobilis at the scale of the Aegean Sea. However, since they
were not documented in detail, it is impossible to fully assess their potential effect on
the populations. A slight population differentiation is observed between the regions of
the North and South Aegean Sea (Fig. 2). For the South Aegean, this could be attributed
to the higher number of collected samples compared to the other regions, leading to a
higher haplotypic diversity in this case. On the other hand, it could be attributed to the
fact that the island of Karpathos is part of a marine protected area (MPA). Although the
design of MPAs is generally not based on genetic and genomic data (Sandström et al., 2016;
Xuereb et al., 2020), in certain cases it has been shown that they succeed in preserving most
of the genetic diversity of their keystone species (Miller & Ayre, 2008), and combined with
the protection measures for those species, they might end up preserving a higher number
of haplotypes.

In the haplotype network of the Eastern Mediterranean (Fig. 2) the haplotypes of North
Aegean (Epanomi, Aggelochori, Chios) formed a subgroup shown in blue coloring; yet
the Korinthiakos Gulf (Ionian Sea) also shares them. These haplotypes were described
by Katsares et al. (2008) and were grouped with the ones from the Tunisian coasts in the
research of Sanna et al. (2013), reinforcing the hypothesis of the high connectivitywithin the
EasternMediterranean basin. On the other hand, the populations that were sampled within
the present study (sampled in the period 2018–2021) did not share the above mentioned
haplotypes. The intervening period between the studies coincided with the outbreak of the
MME, thus raising questions on the association of the populations genetic structuring and
the mass mortality events the populations of the species underwent. Unfortunately, it is
not possible to estimate the potential genetic structuring of the populations if the MME
had not occurred, since the majority of the populations have not survived it. The only
exception is the population in Amvrakikos Gulf, for which there is no pre-MME genetic
information.

The findings of this study support the distinction of the P. nobilis individuals into three
regions of the Mediterranean Sea. The case of the Adriatic Sea is explained in detail in
Sanna et al. (2013); it is a semi-enclosed sea where the genetic flow from the rest of the
Mediterranean Sea is not that high. The other basins of the Mediterranean Sea are distinct
for a number of other species (Penaeus (Melicertus) kerathurus: (Zitari-Chatti et al., 2009);
Pomatoschistus tortonesei: (Mejri et al., 2009); Holothuria polii: (Gharbi & Said, 2011);
Carcinus aestuarii: (Deli, Said & Chatti, 2015), including P. nobilis (Sanna et al., 2013). The
present study analyzed a high number of samples from the Eastern Mediterranean Sea in
order to confirm this pattern. The concatenation of the COI and 16S rRNA genes that was
used in the present study has also proved useful and more informative in other genetic
studies of bivalves (Yuan, He & Huang, 2009; Feng et al., 2011; Slynko et al., 2018), and
shows that there is a certain level of differentiation between the P. nobilis populations in
the Western vs Eastern Basin. Consistently with the Mediterranean pattern of diffusion
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already proposed in Sanna et al. (2013) for this species, this finding suggests that the already
known oceanographic barriers at the Sicily Strait and at the Otranto Strait might be limiting
the dispersal of the species and minimizing the gene flow (Čekovská et al., 2020). Due to its
short pelagic larval duration stage, P. nobilis is a species which is considered to be rather
affected by currents and fronts; at the same time, it could be less prone to gene flow from
other locations (Pascual et al., 2017) and it could exhibit strong population structuring, as
has been shown for other bivalves also characterized by a short planktonic larval stage (Ye,
Wu & Li, 2015).

eDNA and mtDNA marker sequencing
eDNA has been used widely for biodiversity assessments (Pereira et al., 2021) and
for the detection of cryptic, threatened (Hunter et al., 2018) and invasive species
(Ardura et al., 2015). This study was the first, to our knowledge, to use eDNA collected
separately from each individual for genetic variation assessment on a critically endangered
species, although its potential has been advocated for in the literature (Barnes & Turner,
2016; Adams et al., 2019). Our results suggest that the approach can be replicated to
other organisms where minimal disturbance and non-invasive methods are in order.
In addition, it can be employed in the few remaining populations of P. nobilis around
the Mediterranean, such as the ones in Ebro Delta (Prado et al., 2020), the Occitan coast
(Peyran et al., 2022) and the one in Amvrakikos Gulf. Successful amplification for our
chosen markers was possible for about half of the samples, which is lower compared to
the amplification success from the tissue samples, as was originally expected. However,
this number is still considered adequate for the estimation of population genetics indices.
Another advantage of this approach is the certainty that each sample of genetic material
corresponds to a specific individual which would not have been possible if the eDNA
matrix was e.g., water or sediment collected from the study sites; however, there have been
studies on population-level inferences from eDNA water samples mostly regarding large
populations of fish (Sigsgaard et al., 2020).

The results of the present study are based on the sequencing of two mtDNA genes and
there is the possibility that they would be different if another approach was used instead or
in complement to ours, such as sequencing of microsatellites markers (Meenakshi, Remya
& Sanil, 2010; Vanhaecke et al., 2012) or ddRAD sequencing (Darschnik et al., 2019; Ortiz
et al., 2021) or even the addition of more mtDNA markers (e.g., D-loop) (Pourkazemi,
Skibinski & Beardmore, 1999; Parmaksiz, 2019); using more detailed approaches would
enhance the assessment of the genetic structure of P. nobilis throughout theMediterranean.
However, as mentioned previously, P. nobilis is a critically endangered species and the
number of available samples for deciphering population genetic structure is quite limited;
thus, it is challenging to detect the remaining populations of the species and obtain the
appropriate number of samples, with a subsequent high DNA quality, while, at the same
time, ensuring the well-being of the organisms.
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CONCLUSIONS AND PROSPECTS AHEAD
The present study is the first one that includes such a high number of P. nobilis specimens
from different areas of the Eastern Mediterranean basin. Therefore, it significantly
contributes to the knowledge of the genetic variability of the pen shell’s populations;
the number of available COI sequences has increased 3-fold, while the number of 16S
rRNA sequences has had a 20-fold increase. In light of the MME, coordinated studies on
the genetic diversity of P. nobilis throughout the Mediterranean Sea, with the cooperation
of researchers, institutes and universities, should be performed towards the aim of the
conservation andmanagement of the remaining populations of the species. An orchestrated
attempt of a pan-Mediterranean investigation appears to be indispensable. Scientific
cooperation and use of common standards should be implemented in order to obtain
more FAIR data and therefore lead more efficiently to knowledge (Wilkinson et al., 2016).
In future conservational plans on a national level, the Eastern Mediterranean basin should
be considered as homogenous, based on the findings herein. It is obvious that more samples
from the Southern-Eastern Mediterranean Sea would shed more light on the population
genetics status of the species.
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