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Abstract
The tropical seagrass Halophila stipulacea invaded the Eastern Mediterranean Sea in the late nineteenth century and pro-
gressively spread throughout the basin ever since. Its spread is expected to continue north-westward as the Mediterranean 
Sea becomes warmer, potentially changing the seagrass biogeography of the basin. Given the power of genomics to assess 
invasion dynamics in non-model species, we report the first ddRAD-seq study of H. stipulacea and small-scale population 
genomic analysis addressing its century-old Mediterranean invasion. Based on 868 SNPs and 35 genotyped native (Red Sea) 
and exotic (from Cyprus, Greece, and Italy) samples, results suggest that genetic structure was high, especially between major 
geographic discontinuities, and that exotic populations maintain comparably lower genetic diversity than native populations, 
despite 130 years of invasion. The evidence of high heterozygosity excess, coupled with previously reported male-dominated 
and rare flowering records in the exotic range, suggests that clonal propagation likely played a pivotal role in the successful 
colonization and spread of H. stipulacea in the Mediterranean. This shift in reproductive strategy, particularly evident in 
the Italian populations located closest to the western boundary and representing more recent establishments, underscores 
the importance of this cost-effective mode of reproduction, especially during the initial stages of invasion, raising questions 
about the species future expansion trajectory. Our findings serve as a catalyst for future research into the species’ invasion 
dynamics, including deciphering the intricate roles of acclimatization and rapid adaptation, important for a comprehensive 
assessment of invasion risks and improving management strategies aimed at conserving seagrass ecosystems.
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Introduction

Globalization, increased trade, and climate change have 
facilitated the spread of species beyond their natural 
ranges and dispersal limits (Meyerson and Mooney 2007; 
Hulme 2009, 2017). Exotic species that successfully estab-
lish and spread can become invasive and cause adverse 
ecological, environmental, and economic impacts (Sim-
berloff et al. 2013; Gallardo et al. 2016; Anton et al. 2019; 
Diagne et al. 2021). The Mediterranean Sea stands out as a 
hot spot for exotic species (Costello et al. 2010; Tempesti 
et al. 2020), harboring a total of 1000 validated exotic 
species, with 786 of them found in the Eastern Mediter-
ranean (Aegean and Levantine Sea) (Zenetos et al. 2022a, 
b). Over the past few decades, the basin has experienced 
a persistent increasing trend, with an annual introduction 
rate of 14 new exotic species (Zenetos et al. 2022c). Its 
vulnerability to species introductions has been linked to 
the high volume of shipping traffic, aquaculture, aquarium 
trade, and the opening of the Suez Canal in 1869, which 
artificially connected the Mediterranean Sea to the Red 
Sea and the Indian Ocean (Zenetos et al. 2012). The ongo-
ing tropicalization (i.e., waters becoming warmer) of the 
Mediterranean Sea is expected to further favor the occur-
rence and spread of exotic tropical species over temperate 
native ones (Bianchi and Morri 2003; Raitsos et al. 2010; 
Chefaoui et al. 2018; Zenetos and Galanidi 2020; Beca-
Carretero et al. 2020), raising concerns about the future of 
the native biodiversity and the relative ecosystem services.

The exotic seagrass Halophila stipulacea (Forsskål) 
Ascherson, 1867, originally native to the Red Sea, Persian 
Gulf, and Indian Ocean (Lipkin 1975a), is considered one 
of the first Lessepsian immigrants (Den Hartog 1970). 
Reported first in Rhodes (Greece) and Cyprus at the end 
of the nineteenth century (Fritsch 1895; Lipkin 1975b), 
this small species has progressively spread across the 
Mediterranean basin, with Cannes on the French Riviera 
as the most recent western limit (Thibaut et al. 2022). 
In contrast to its introduction in the eastern Caribbean 
islands, where in less than 2 decades it spread rapidly and 
outcompeted or even displaced native seagrasses (Willette 
et al. 2014; Smulders et al. 2017; Scheibling et al. 2018), 
its Mediterranean invasion has been described as slow and 
punctuated in space, generally colonizing habitats devoid 
of native macrophytes (Winters et al. 2020). However, 
recent evidence of competitive displacement and com-
petitive advantage (i.e., signatures of stress) between H. 
stipulacea and the native Cymodocea nodosa (Ucria) 
Ascherson, 1870, in Tunisia (Sghaier et al. 2014) and the 
Aegean Sea (Conte et al. 2023), respectively, suggests that 
its previously considered harmless introduction may be 
changing. Bennett et al. (2021) suggest that subtropical 

and tropical species introduced to higher latitude rangers 
are time-bombs triggering invasive behavior once climate 
warming narrows the thermal gap between the introduced 
and original range.

Furthermore, the recent evidence of a shift in the ther-
mal niche of exotic H. stipulacea populations from the 
warm waters of the Red Sea to the cooler thermal regime 
of the Mediterranean (Wesselmann et al. 2020), coupled 
with its arrival in the French Riviera 30 years earlier than 
predicted by species distribution models under climate 
change (Nguyen et al. 2020; Beca-Carretero et al. 2020; 
Wesselmann et al. 2021), suggests that acclimation and/or 
adaptive processes together with the dispersal capacity of the 
species have been underestimated. The ecological implica-
tions of a change in the seagrass biogeography from a basin 
dominated by the native Posidonia oceanica (Linnaeus) 
Delile, 1813, to a replacement by species with lower habitat 
complexity and fewer ecological services (Nordlund et al. 
2016), highlight the need for a more comprehensive assess-
ment of the mechanisms that govern the spread of H. stipu-
lacea to improve our predictability of its invasive potential.

Recent advances in genomics have provided new meth-
odologies and approaches for detecting and understanding 
the processes involved in successful invasions and the asso-
ciated ecological and evolutionary consequences (Chown 
et al. 2015). In particular, the development of reduced-rep-
resentation sequencing techniques, such as RAD-Seq and 
genotyping by sequencing (GBS) (Narum et al. 2013), has 
made possible to cost-effectively genotype large numbers of 
markers for numerous samples and populations, including 
species with little or no previous genomic information avail-
able, which is often the case for invasive species (Ellegren 
2014; Matheson and McGaughran 2022). The high number 
and advanced resolution of present-day genomic markers 
allow for more accurate estimates of pre- and post-introduc-
tion genetic variation, as well as more precise demographic 
inferences and phylogeographic reconstructions that enable 
identification of invasion routes, putative source popula-
tions, and number of independent introductions (Rašić et al. 
2014; Rius et al. 2015a, b; Chown et al. 2015; Resh et al. 
2021). In addition, invasion genomics has provided new 
insights into the adaptive response of invasive species by 
enabling the identification of loci and genomic regions that 
are under selection and may contribute to the evolution of 
genotypes with increased fitness that favor adaptive spread 
(Davidson et al. 2011; Chown et al. 2015; Bernardi et al. 
2016; Forsström et al. 2017; Chen et al. 2021; Xiang et al. 
2023).

Although research on the genomics of invasive species is 
increasing, data are still lacking for many species (Mathe-
son and McGaughran 2022). For seagrasses in particular, 
their partially clonal propagation strategy presents intrinsic 



Marine Biology          (2024) 171:40 	

1 3

Page 3 of 15     40 

challenges (Halkett et al. 2005; Arnaud-Haond et al. 2020). 
These include the sampling effort that should account for 
the possibility of collecting samples belonging to the same 
clone, the still difficult and sometimes ambiguous distinc-
tion between multi-locus genotypes (MLGs), and the inter-
pretation of genomic patterns considering that standard 
bioinformatics and theoretical frameworks are based on 
sexually reproducing panmictic populations (Halkett et al. 
2005; Crow and Kimura 2017). Nevertheless, the insights 
that genomic studies can bring to seagrass biology have 
encouraged researchers to overcome these limitations and 
lay the groundwork for the development of seagrass genom-
ics (Procaccini et al. 2007; Davey et al. 2016). Considerable 
progress has been made in Zostera marina Linnaeus, 1753 
(Olsen et al. 2016) and a few other seagrass species (Lee 
et al. 2016; Phair et al. 2021; Nguyen et al. 2023), but genetic 
and genomic studies on H. stipulacea remain extremely lim-
ited (Tsakogiannis et al. 2020). With respect to H. stipulacea 
invasion, to our knowledge, only two genetic studies have 
been published. One study used randomly amplified poly-
morphic DNA (RAPD) to assess the genetic variation in 
two western Mediterranean meadows, concluding that the 
populations had high within and between genetic variability 
(Procaccini et al. 1999). The second study used the rDNA 
region (ITS1–5.8S–ITS) to look at the genetic relationship 
between Mediterranean and Red Sea populations, provid-
ing the first molecular analysis supporting the Lessepsian 
origin hypothesis and suggesting a recent disjunction and 
continuous and intensive gene flow (Ruggiero and Procac-
cini 2004). However, the polymorphic information content 
of these DNA markers falls below those for microsatellites 
and SNPs (Liu and Cordes 2004; Grover and Sharma 2016), 
limiting the power of these conclusions.

Here, we apply double-digest Restriction-site Associated 
DNA sequencing (ddRAD-seq) to discover single-nucleotide 
polymorphisms (SNPs) to assess the genetic diversity and 
structure of H. stipulacea populations from its native (Red 
Sea) and exotic (Mediterranean Sea) biogeographic range. 

Our results provide new insights into the demographic his-
tory and genomic patterns underlying the colonization, 
establishment, and subsequent spread of H. stipulacea in 
the Mediterranean Sea.

Methods

Study sites and sample collection

Halophila stipulacea shoots were collected from mono-
specific shallow-water meadows (< 10 m depth) across 
its native (Red Sea) and exotic (Mediterranean Sea) range 
(Table 1; Fig. 1). In particular, seagrass samples were col-
lected from two sites in Cyprus, three sites in Greece, two 
sites in Italy, and three sites in Saudi Arabia. The sampling 
was conducted during July–October 2017, except for Lio-
petro (Greece) which was sampled in September 2019. At 
each site, five replicate samples were randomly collected 
by hand using SCUBA-diving. The replicates were at least 
5 m apart from each other to minimize the risk of sampling 
within the same clonal patch, a well-established practice 
in seagrass research as exemplified in studies by Procac-
cini et al. (2001); Arnaud‐Haond et al. (2007) and Jahnke 
et al. (2017). Each replicate consisted of a piece of hori-
zontal rhizome containing five shoots. After being gently 
cleaned with seawater to remove debris and epiphytes, each 
replicate was stored at  – 20 ºC until arrival at the lab and 
then stored at  – 80 ºC. The samples from Liopetro were 
immersed in RNAlater™ Stabilization Solution and stored 
at  – 20 ºC.

DNA isolation, library preparation, and sequencing

The leaf and/or rhizome tissue of each replicate were 
homogenized using a mortar and pestle under constant 
addition of liquid nitrogen. From the finely powdered tis-
sue produced, 100–150 mg were used for DNA extraction 

Table 1   Geographic coordinates of H. stipulacea sampling sites

Origin Region Country Sampling site Site code Latitude Longitude

Native Red Sea Saudi Arabia Rabig–Al Kharrar RAK 22.933611 38.880278
Saudi Arabia Yanbu YAN 24.194389 37.930417
Saudi Arabia Haddad Beach HAD 28.071667 34.845722

Exotic Eastern Mediterranean Sea Cyprus Limassol LIM 34.709139 33.136083
Cyprus Limassol Port LMP 34.643800 33.013870
Greece Maridati MAR 35.221833 26.273111
Greece Liopetro LIO 35.208091 26.006202
Greece Souda SOU 35.469806 24.136361

Western Mediterranean Sea Italy Termini Imerese TER 37.977317 13.713317
Italy San Nicola l’Arena SAN 38.015861 13.616278
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following a modified cetyltrimethyl ammonium bro-
mide (CTAB) chloroform/isoamyl alcohol (24:1) isola-
tion protocol based on the original method (Doyle and 
Doyle 1990), with the inclusion of an RNAse treatment 
(RiboShredder RNase Blend, Epicentre, Madison, WI, 
USA) of 1 h at 37 °C. The DNA pellet was re-suspended 
in 50 μL of 5 mmol/L Tris, pH 8.5. Afterward, the DNeasy 
PowerClean Pro® Cleanup Kit (Qiagen, UK) was used 
to remove polysaccharides, polyphenols, and other PCR-
inhibiting substances that affect downstream applications. 
DNA quality and quantity were checked through a 0.7% 

agarose gel electrophoresis and using the NanoDrop ND 
1000 (NanoDrop Technologies, Wilmington, DE, USA).

The double-digest restriction-associated DNA (ddRAD) 
libraries were prepared following the protocol established 
by Peterson et  al. (2012), with some modifications as 
described in Manousaki et al. (2016) and briefly explained 
below. DNA samples were processed in quadruplicates 
(15 ng of DNA each) and treated as independent samples 
throughout the whole laboratory analysis. Each DNA sam-
ple was digested with two high-fidelity (RE) restriction 
enzymes: SbfI (CCT​GCA​, recognition site GG) and NlaIII 
(CATG, recognition site C) from New England Biolabs, 
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Fig. 1   Distribution of the sampled sites (red diamond, site code) and 
H. stipulacea current geographic distribution in the Mediterranean 
and Red Sea (black dots) based on the latest review (Winters et  al. 
2020), the new French Riviera record (Thibaut et al. 2022), and own 

observations (E.T. Apostolaki, pers. observations). Site codes: YAN, 
HAD, and RAK (Saudi Arabia), LIM and LMP (Cyprus), MAR, 
LIO, and SOU (Greece), and TER and SAN (Italy)
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NEB, UK. Briefly, the genomic DNA was digested at 37 °C 
for 9 min using 20 units of enzyme per microgram of DNA 
and 0.6 µl of CutSmart Buffer (NEB), in a 6 µl total reaction 
volume. The reactions were left to cool at room temperature 
and 3 µl of an adapter mixture was added and incubated at 
room temperature for 10 min. The adapter mixture con-
tained individual combinations of P1 (SbfI-compatible) 
and P2 (NlaIII-compatible), at concentrations of 6 and 
96 nM, respectively, in a 1 × reaction buffer Nº 2 (NEB). 
Adapters P1 and P2 included a five- to seven-base sequence 
(barcode) for sample identification after sequencing. Liga-
tion was performed over 3 h at 22 ºC by adding 3 µl of 
ligation mixture containing 4 mM rATP (Promega, UK) 
and 2000 T4 ligase units (NEBs) in a 1 × CutSmart buffer 
(NEB). The ligated samples were pooled and purified using 
the column MinElute PCR Purification Kit (Qiagen, UK) 
and eluted in 68 µl EB buffer (Qiagen, UK). Size selection 
of the ligated pooled samples was performed by agarose 
gel separation using a selection window between 400 and 
700 bp. Selected gel fragments were purified using a Min-
Elute agarose gel extraction kit (Qiagen, UK), and eluted 
in 65 µl of EB buffer. PCR amplification was performed on 
the size-selected fragments (16 cycles of PCR on 12.5 µl 
reactions, each with 0.4 μl of Template DNA) using a Taq 
high-fidelity polymerase (Q5 Hot Start High-Fidelity DNA 
Polymerase, NEB). The PCR reactions were pooled equi-
molarly into a single pool, purified using a column Min-
Elute PCR purification kit (Qiagen, UK), and eluted in 52 µl 
of EB Buffer. To maximize the removal of small fragments, 
the 52 µl were purified using an equal volume of AMPure 
magnetic beads (Perkin-Elmer, UK). Finally, the ddRAD 
library was eluted in 25 µl of EB buffer and sequenced at 
the Institute of Marine Biology, Biotechnology and Aqua-
culture (IMBBC) of HCMR in Crete on an Illumina MiSeq 
(v2 chemistry, 300 cycle kit, 162 bp paired-end reads).

Raw data processing, SNP calling, filtering, 
and clone correction

The quality of the Illumina sequence data was initially 
assessed using FastQC v0.11.9 (Andrews 2010). Based 
on the FastQC results, all reads were trimmed to 150 bp 
to remove poor-quality base calls at the end of the read. 
Subsequently, quality filtering, demultiplexing, and de 
novo SNP calling were conducted using STACKS v2.62 
(Catchen et al. 2011, 2013; Rochette et al. 2019). The 
process_radtags.pl function was first used to filter out 
low-quality reads, reads missing the expected “sbfI” or 
“nlaIII” cut site, and demultiplex the remaining reads 
according to the unique combination of in-line barcode 
allowing two mismatches (–c –q –r –renz_1 sbfI –renz_2 
nlaIII –inline_inline –adapter_mm 2). After demultiplex-
ing, the quadruplicates of each sample were merged for 

all posterior analysis. Given that the H. stipulacea draft 
genome is still highly fragmented and the percentage of 
complete BUSCO score is below 50% (Tsakogiannis et al. 
2020), the denovo_map.pl function instead of the ref_map.
pl function was used to build the loci (‘stacks’) and call the 
SNPs. Building of the loci was controlled by the follow-
ing parameters: minimum number of raw reads required 
to form an initial ‘stack’ (m = 4), number of mismatches 
allowed between two stacks to merge them (M = 4), and 
number of mismatches allowed between loci when build-
ing the catalog (n = 4). Only the first SNP per RAD locus 
(–write_single_snp) was retained to ensure independence 
and avoid inherent linkage disequilibrium bias. In addi-
tion, an haplotype-based analysis was conducted by retain-
ing all the SNPs per RAD locus. However, considering 
that the outcomes closely resembled the patterns observed 
in the biallelic SNP analysis (one SNP per RAD locus), the 
main text focused on the biallelic SNP analysis, while the 
haplotype-based results, serving as supplementary and 
corroborative evidence, are presented in the supplemen-
tary information (Supplementary Information; Methods, 
Tables SI1 and SI2 and Fig. SI1). FastQC and STACKS 
analysis were performed in the IMBBC High performance 
computing (HPC) “Zorbas” (Zafeiropoulos et al. 2021).

The R packages SNPfiltR v. 1.0.0 (DeRaad 2022) and 
vcfR v. 1.13.0 (Knaus and Grünwald 2017) were used to 
visualize and iteratively filter the biallelic SNP dataset. An 
initial SNP filtering was done to perform the clone correc-
tion analysis, a recommended step to account for the mixed 
reproductive strategy of seagrasses (sexual and asexual), 
which may lead to biases on metrics that rely on allele 
frequencies assuming panmixia. This filtering consisted of 
retaining only loci with a minimum depth of 5, minimum 
genotype quality of 20, and within an allele balance ratio 
of minimum 0.05 and maximum 0.95. As the clone correc-
tion analysis was conducted independently for each site, 
no missing data were allowed for the specimens within 
each population. The genotype_curve from the R package 
poppr v. 2.9.3 (Kamvar et al. 2014) was used to check if 
the dataset per population was sufficient to correctly iden-
tify MLGs. The mlg.filter() function was used to identify 
multi-locus genotypes (MLGs). The genetic distance was 
calculated with the bitwise.dist function using the default 
“farthest” neighbor clustering algorithm and its predicted 
genetic distance threshold. Each MLG was reduced to a 
single observation, meaning that one organism for each 
multi-locus lineage (MLL) was retained. Following clone 
correction, the SNP calling and filtering was repeated from 
the start on the resulting reduced (clone-free) sample list, 
each representing a distinct MLL. The same initial SNP 
filtering criteria was applied, except for allowing SNPs to 
be retained if they were genotyped in a minimum of 75% 
of individuals (SNP completeness) and present in at least 
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one specimen from each sampling site. Any invariant sites 
generated during genotype filtering were subsequently 
removed (min.mac = 1). This revised dataset served as the 
foundation for all downstream analyses.

Genetic diversity

Standard genetic diversity indices including allelic richness 
or rarefied allelic count (Ar), observed heterozygosity (Hobs), 
expected heterozygosity (Hexp), and fixation index (FIS) were 
estimated for each sampling site using the R package Hierf-
stat v. 0.5–11 (Goudet 2005). A total of 1,000 permutations 
were used to test if there was a significant excess or deficit of 
heterozygotes (negative or positive FIS, respectively). Clonal 
diversity or genotypic richness (RMLG) was estimated based on 
the number of shoots sampled (N) and the number of MLG 
detected for each population, based on RMLG = (MLG-1)/(N-1) 
(Dorken and Eckert 2001).

Population differentiation

Individual genetic variation was first explored by a principal 
component analysis (PCA) using the R package adegenet 
v. 2.1.8 (Jombart and Bateman 2008; Jombart and Ahmed 
2011). The first two principal components were plotted along 
two axes using ggplot2 v. 3.3.6 (Wickham 2011). Taking into 
consideration the mixed mode reproduction of H. stipulacea, 
the most likely number of genetically distinguishable groups 
(K) was inferred using a sparse negative matrix factorization 
(snmf) clustering method on the R package LEA v. 3.8.0 
(Frichot and François 2015). This approach was chosen 
over the STRU​CTU​RE algorithm (Pritchard et al. 2000), 
because it allows for relaxed population genetic assump-
tions, such as Hardy–Weinberg proportions and panmixia, 
acknowledged as problematic in clonal or partially clonal 
organisms. The analysis was performed 100 times with K 
from 1 to 10, assuming an admixture model, correlated allele 
frequencies and without population priors. The SNMF’s 
cross-entropy criterion was used to infer the optimal num-
ber of clusters (K). The lower the cross-entropy, the better 
the model accounts for population structure. The ancestry 
matrix was generated by estimating the individual admix-
ture coefficients from the lowest cross-entropy run and plot 
using ggplot2 v. 3.3.6 (Wickham 2011). A Minimum Span-
ning Network (MSN) analysis was employed to visualize 
genetic relationships among genotypes. Genetic distances 
between genotypes were calculated using the `provesti.dist` 
function and plotted using ‘plot_poppr_msn’, both from the 
R package poppr v. 2.9.3 (Kamvar et al. 2014). The global 
and pair-wise FST based on Weir and Cockerham’s estimate 
was computed between sites using the R package Hierfstat 
v. 0.5–11 (Goudet 2005), and upper and lower confidence 
intervals were calculated based on 1000 permutations.

Results

Sequencing, SNP calling, and clone correction

From the 50 specimens sampled, isolating high-molecular-
weight (HMW) DNA was not possible for one site from 
Cyprus (LMP), one site from Saudi Arabia (RAK), and for 
5 other samples from different sites. The ddRAD sequencing 
for the remaining 35 samples generated 29,698,368 reads, 
with an average of 749,596 reads per individual after trim-
ming and quality filtering. Based on the Farthest Neigh-
bor clustering method and the Provesti’s genetic distance 
threshold, 27 MLG were identified. Two clones belonged 
to the native range and six to the exotic range. After clone 
correction and SNP filtering, a set of 868 high-quality poly-
morphic SNPs were retained. The final dataset contained 
10.62% missing data. Sites had an average SNP complete-
ness of 89.38%, ranging from 98.6% to 61.0%, with the latter 
corresponding to Cyprus. The lower values can be primar-
ily attributed to lower DNA quality and subsequent lower 
number of reads. Nevertheless, in light of the lack of pre-
vious genomic information, the samples were included in 
the analysis. However, results pertaining to this specific site 
should be approached with caution.

Genotypic and genetic diversity

Genotypic richness (RMLG) varied between sites ranging 
from 0.5 to 1. The allelic richness (Ar) and expected het-
erozygosity (Hexp) ranged from 1.137 to 1.260 and 0.118 
to 0.259, respectively. While values for both indices were 
consistently lower across all the exotic sites, the most pro-
nounced difference was observed in the Hexp. In the native 
range, the average Hexp was 0.238, while in the exotic sites, 
it was 0.134, marking an approximately 1.7-fold time lower 
Hexp in the exotic sites. The fixation index (FIS) was nega-
tive (indicating an excess of heterozygosity) and significant 
for all sites (Table 2; Table SI3: Confidence intervals). The 
Italian sites, TER and SAN, as well as SOU in West Crete, 
Greece, exhibited the highest negative departure, approach-
ing the minimum value of -1 indicative of almost exclusively 
clonal reproduction. In contrast, the lowest departure was 
observed in HAD, Saudi Arabia.

Population differentiation

Two principles components explained 41.3% of the total 
variability of genotyped samples among sites, separating 
them in three main groups which corresponded to the three 
major geographic discontinuities in our sampling, Western 
Mediterranean (Italy), Eastern Mediterranean (Greece and 
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Cyprus), and the Red Sea (Saudi Arabia) (Fig. 2). The MSN 
reaffirms the distinctiveness of the Italian populations, which 
form a singular and distinctive clade (Fig. 3). In contrast, the 
Greek populations, along with the two populations originat-
ing from the Red Sea, are more diverse and distinct from 
each other. Moreover, the MLG with the lowest genetic dis-
tance coincides with those demonstrating higher levels of 
clonality, as indicated by an excess of heterozygotes; spe-
cifically, populations TER, SAN, and SOU. The analysis 
of individual assignment using LEA revealed a finer scale 
genetic structure (Fig. 4). Under the K = 3 clustering sce-
nario, samples were separated in the same three groups as 
suggested by the PCA. However, under the K = 4 cluster-
ing scenario, in addition to the three main groups reported 
above, the samples, corresponding to northern (HAD) and 
central (YAN) Red Sea, were recognized as two distinct 
genetic clusters. Furthermore, according to K = 5, the most 
likely genetic clustering scenario considering the lowest 
cross-entropy criterium, the Greek populations divided into 
West (SOU) and East Crete (MAR and LIO). Irrespective of 
the K clustering scenario, the Italian sites (SAN and TER) 
consistently formed one distinct genetic cluster with no signs 
of admixture. The overall population differentiation (FST) 
based on Weir and Cockerham’s estimate was 0.354. Pair-
wise FST values between sites ranged from 0.002 to 0.518 
and were all significant except for the two Italian sites, TER 
and SAN (Table 3, Table SI4: Confidence intervals). The 
highest value was between the Italian site (TER) and central 
(YAN) Red Sea, corresponding to the highest geographic 
distance.

Discussion

We report the first ddRAD-seq study on the non-model sea-
grass Halophila stipulacea resolving the small-scale popula-
tion genomic patterns of this century-old Mediterranean Sea 

invasion. Based on 868 SNPs and 35 successfully genotyped 
samples, genome-wide analysis suggests high genetic struc-
ture between and within native (Red Sea) and exotic (Medi-
terranean Sea) populations, with a trend indicating lower 
genetic diversity in the latter. Evidence of heterozygosity 
excess driven by clonality suggests that clonal propagation 
has likely played an important role in the Mediterranean 
spread and the genomic patterns observed.

This small-scale genomic study revealed a gradual 
increase in genetic differentiation (FST) and a decreasing 
trend in genetic diversity (Ar and Hexp) as we depart from the 
native Red Sea, consistent with the species geographical and 
temporal expansion, which began in the Levantine Sea and 
progressively expanded throughout the rest of the Mediter-
ranean, reaching the western subregion just over 30 years 
ago based on available literature (Biliotti and Abdelahad 
1990; Gambi et al. 2009). Genetic drift resulting from con-
secutive founder effects and genetic bottlenecks exerted by 
a limited number of founding genotypes (Suarez and Tsutsui 
2008), may explain the observed lower genetic diversity, 
however, more extensive sampling is needed to confirm this 
trend across the exotic range. Counterintuitively, in contrast 
to expectations from population genetics theory, numer-
ous invasive species do not exhibit a decrease in genetic 
diversity (Roman and Darling 2007; Rius et al. 2015b). In 
fact, genetic studies on other Lessepsian immigrants have 
revealed similar or higher levels of genetic diversity in the 
introduced populations when compared to their native coun-
terparts, with low genetic structure found between the two 
ranges, a pattern typical of marine invaders (Bernardi et al. 
2010; Riquet et al. 2013).

Genomic patterns of invasive populations are influenced 
by the introduction history, the nature and extent of genetic 
bottlenecks, the mating system, and the dispersal ability of 
the species (Novak 2005; Hernández-Espinosa et al. 2022). 
Multiple introductions, admixture, and gene flow contrib-
ute to counteract the effect of genetic bottlenecks and small 

Table 2   Genetic diversity summary statistics for each sampling site based on 868 highly informative SNPs

N  number of successfully genotyped samples, MLG number of multi-locus genotypes, RMLG genotypic richness, Ar rarefied allelic count for the 
lowest number of samples, Hexp expected heterozygosity, Hobs observed heterozygosity and FIS fixation index
Asterisk indicates values are significantly different from zero based on 1000 permutations

Origin Region Country Site codes N MLG RMLG Ar Hexp Hobs FIS

Native Red Sea Saudi Arabia YAN 5 4 0.750 1.229 0.216 0.280 – 0.305*
Saudi Arabia HAD 5 4 0.750 1.260 0.259 0.272 – 0.079*

Exotic Eastern Mediterranean Sea Cyprus LIM 4 3 0.667 1.192 0.162 0.209 – 0.285*
Greece MAR 4 3 0.667 1.169 0.154 0.216 – 0.420*
Greece LIO 3 3 1.000 1.154 0.131 0.204 – 0.488*
Greece SOU 4 3 0.667 1.147 0.119 0.238 – 0.966*

Western Mediterranean Sea Italy TER 5 4 0.750 1.137 0.118 0.232 – 0.944*
Italy SAN 5 3 0.500 1.146 0.121 0.235 – 0.932*
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population sizes by (re)introducing novel genetic variation 
(Verhoeven et al. 2011). In this case, our results revealed low 
levels of admixture and high genetic structure, particularly 
evident between the three major geographic discontinuities, 
Red Sea (Saudi Arabia), Eastern Mediterranean (Greece and 
Cyprus), and Western Mediterranean (Italy), suggesting lim-
ited gene flow. Genetic structure was also present within 
regions as shown by the K = 5 optimal genetic clustering 
scenario and the significant pair-wise FST values, except for 
TER and SAN, the two Italian sites located < 10 km apart. 
Pair-wise FST values were generally high, but within the val-
ues previously reported on other seagrasses (e.g., Enhalus 

acoroides (Nakajima et al. 2014), Thalassia hemprichii 
(Jahnke et al. 2019), and Posidonia oceanica (Tutar et al. 
2022). Our results differ with previous findings by Rug-
giero and Procaccini (2004), who initially suggested high 
gene flow and multiple introductions for the H. stipulacea 
Mediterranean invasion based on the lack of differentiation 
found on the ITS nuclear ribosomal DNA region within 
and between the Mediterranean and the Red Sea. The dis-
crepancy between the two studies could be attributed to the 
different power of the genetic markers to resolve structure. 
Single DNA regions, as used by Ruggiero and Procaccini 
(2004), are useful for phylogenetic analysis, in this case for 

Fig. 2   Principal Component Analysis biplot based on 868 highly informative SNPs of H. stipulacea at the study sites. Site codes: YAN and 
HAD (Saudi Arabia), LIM (Cyprus), MAR, LIO, and SOU (Greece), and TER and SAN (Italy)
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confirming the Lessepsian origin, but their lower perfor-
mance may result in less precise estimations of population 
genetic parameters (Morin et al. 2004).

Population genomic patterns of natural populations are 
largely influenced by the relative importance of sexual ver-
sus asexual reproduction (Barrett et al. 1993; Bengtsson 
2003). Changes in reproductive modes such as an increase 
in clonal propagation are common in invasive species (Bar-
rett et al. 2008; Barrett 2015) as it allows rapid expansion 

of the remnant genotypes surpassing the costs associated 
with sexual reproduction, which can be advantageous when 
colonizing a new environment (Smith and Maynard-Smith 
1978). Genotypic richness (RMLG) is the most common 
indicator of clonality on population genetic analysis. Based 
on this, RMLG varied across our study area and was gener-
ally lower in the exotic populations, suggesting a slightly 
higher rate of clonality. However, considering the small and 
uneven number of samples in our study, and the sensitivity 

Distance

Site

Fig. 3   Minimum Spanning Network constructed based on the Proves-
ti’s genetic distance. Each node (circle) represents one multi-locus 
genotype (MLG). The thickness and darkness of the lines connect-
ing the nodes indicate the genetic distance between them; the smaller 

the genetic distance, the darker the color and the thicker the line. 
Site codes: YAN and HAD (Saudi Arabia), LIM (Cyprus), MAR, 
LIO, and SOU (Greece), and TER and SAN (Italy)
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of genotypic richness to sample size and spatial sampling 
design, heterozygote excess is a more reliable indicator 
of clonality (Arnaud-Haond et al. 2020). Clonality-driven 
heterozygosity excess has been well documented in other 
seagrasses, including Zostera marina (Kamel et al. 2012), 
Halophila ovalis (Xu et al. 2019), Cymodocea serrulata 
(Arriesgado et al. 2015), Cymodocea nodosa, and Posido-
nia oceanica (Arnaud-Haond et al. 2020). In light of this, 
the strong heterozygosity excess observed in the exotic sites, 
as indicated by the significant negative FIS values, includ-
ing instances approaching the minimum value of  – 1, sug-
gests a recent drastic reduction in effective population size 
and high clonality rates. This coincides with the hypoth-
esized primarily clonal propagation in the Mediterranean 
region based on the male-dominated and much less com-
mon flowering records than in the native Red Sea (Winters 
et al. 2020). Moreover, these observations resonate with the 
expectations outlined by Baker’s Law (Baker 1955), under-
scoring the importance of this cost-effective mode of repro-
duction, particularly during the initial phases of invasion. 

The prevalence of asexual reproduction during invasion has 
been observed in other species, such as the red alga Agaro-
phyton vermiculophyllum introduced in North America and 
European coastlines (Krueger-Hadfield et al. 2016; Flanagan 
et al. 2021), as well as the accidentally introduced green 
algae Caulerpa taxifolia in the Mediterranean and southern 
Australia (Arnaud-Haond et al. 2017). Nonetheless, recent 
evidence of sexual reproduction including the presence of 
matured seeds capsules in Chios, Greece (Gerakaris and Tsi-
amis 2015), and adjacent female and male flowers in Cyprus 
(Nguyen et al. 2018), along with personal observations of 
seeds in the Aegean Sea (Crete and Cyclades Islands; E. T. 
Apostolaki), suggest that exotic populations can support sex-
ual reproduction, at least in the Eastern Mediterranean Sea.

Furthermore, an increase in clonal reproduction is par-
ticularly common in populations at the edge of the distri-
bution range, as they are typically subjected to suboptimal 
environmental conditions (Arriesgado et al. 2015). In this 
case, the Italian populations, at the edge of the western 
Mediterranean distribution, consistently formed a distinct 

TER SAN SOU LIO MAR LIM HAD YAN
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Fig. 4   Individual admixture coefficients using sparse nonnegative matrix factorization (snmf) computed in LEA for K = 3–5; each bar represents 
one MLG. Site codes: YAN and HAD (Saudi Arabia), LIM (Cyprus), MAR, LIO, and SOU (Greece), and TER and SAN (Italy)
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genetic cluster and a unique clade within the MSN, with no 
evidence of admixture with other populations. Additionally, 
these populations stand out for having the lowest genetic 
diversity, as evidenced by both Ar and Hexp, and the high-
est clonality, based on the strong heterozygosity excess and 
the lowest genotypic richness. Due to the limited number of 
sites and specimens, it is not possible to determine whether 
this corresponds to a punctual or a frequent case among the 
western edge populations. However, given that the expected 
expansion into the rest of the western subregion will most 
likely be led by these recently founded edge populations, 
examining how potential long-term effects of a dominant 
clonal propagation and the impacts of reduced genetic vari-
ation in the selection response may influence the subsequent 
expansion should be considered.

While microsatellite-based population genetic studies 
typically require 25–30 individuals per population (Hale 
et al. 2012), SNP markers have been shown to accurately 
estimate population genetic parameters even when sample 
sizes are relatively low, with as few as 2–6 specimens in 
certain cases (Willing et al. 2012; Nazareno et al. 2017; 
Li et al. 2020; McLaughlin and Winker 2020). Neverthe-
less, in this case, the low number of samples along with 
the limited number of SNPs hindered our capacity to make 
further phylogeographic inferences, including identifying 
the source population(s) of the western invasion or candi-
date loci or regions under selection. To address these goals 
effectively, a higher geographic representation, encompass-
ing additional sites and a higher number of samples per 
site, coupled with an increased number of SNPs, would be 
needed to address these goals. This is particularly impor-
tant considering that the presence of clones can reduce the 
final number of unique samples available for the analysis. 
Furthermore, considering the large size of the H. stipulacea 
genome (3.7 Gb) (Tsakogiannis et al. 2020), an increase in 
the sequencing effort is indispensable. Conducting a larger 
scale population genomic analysis will not only contribute to 
confirm our early findings, but also help deepen our under-
standing of the demographic history, genetic background 

and evolutionary processes underlying the colonization, 
establishment, and subsequent spread of H. stipulacea in 
the Mediterranean Sea. These insights will, in turn, contrib-
ute significantly to the assessment of invasion risks and the 
refinement of management strategies for the conservation of 
seagrass ecosystems.

The results presented provide the first ddRAD-seq analy-
sis on the non-model seagrass H. stipulacea and the first 
population genomic analysis addressing its century-old Med-
iterranean Sea invasion. The small-scale genome-wide SNP 
analysis revealed that genetic structure was high, especially 
between major geographic discontinuities and that exotic 
populations maintain a comparably lower genetic diversity 
than native populations, despite 130 years of invasion. Evi-
dence of high heterozygosity excess together with previously 
reported male-dominated and rare flowering records in the 
exotic range suggests that clonal propagation has played 
an important role in the Mediterranean establishment and 
spread, and the development of the population genetic pat-
terns observed.
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