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Abstract: The devil firefish Pterois miles (Bennett 1828) is recognized as one of the 100 worst invasive
alien species (IAS) in the Mediterranean Sea with significant socioeconomic and ecological impli-
cations. A total of 363 individuals were collected between April 2021 and March 2022 from the
Levantine Sea (the Eastern Mediterranean), aiming to assess the current progression of the popu-
lation. The male to female ratio (1:1.03) did not significantly depart from 1:1, with length–weight
relationships exhibiting positive allometric growth. Five age groups were identified, with the third
and fourth age groups being the predominant (74% of the population). The highest reproductive
intensity was observed during summer followed by autumn. The onset of sexual maturity (L50) for
the total population was estimated at 22.44 cm in total length (2.1 years). The asymptotic length was
estimated at 45.35 cm for the total population, with males growing larger than females. Longevity
was estimated at 14.4 years for the total population. The inflection point was estimated at 4.31 years
for the total population. Length with a 50% probability of capture (LC50) was estimated at 23.03 cm,
with the respective age (t50) of 2.2 years. The exploitation rate (E = 0.48) indicated that the population
is underexploited. The optimum (Fopt) and target (Flim) fishing mortality were higher in comparison
with the present fishing mortality (F = 0.41), indicating a potential for commercial exploitation of
the species.

Keywords: invasive species; Levantine Sea; mortality; von Bertalanffy; Southern Aegean Sea

1. Introduction

Eastern Mediterranean coastal ecosystems are subjected to ongoing shifts in species
abundance and community composition [1–5]. To date, in the Mediterranean Sea, almost
1000 non-indigenous taxa have been identified as established and casual [6,7], with fishes
occupying the second highest diversity among them. Their numbers continue to rise, pre-
senting increased establishment success [7–9]. The Suez Canal is the most significant entry
and ever since the opening in 1869, this human-made passageway has allowed hundreds of
species from the Red Sea to cross into the Mediterranean [6,10,11]. A considerable number
of these species are migrating westward and establish sizable, reproduceable populations
in the eastern Mediterranean.

According to several studies, it is rather clear that the introduction of marine invasive
alien species (IAS) to an ecosystem poses a serious threat to the biodiversity, structure and
function [12–18]. Caulerpa taxifolia (M.Vahl) C.Agardh, 1817, first discovered in the basin in
1984 [19,20], and Caulerpa cylindracea Sonder, 1845, first documented in the Mediterranean
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in 1990 [21], are two of the first invasive species that raised significant concerns about be-
coming major threats to the Mediterranean ecosystem. In the late 2010s, the two introduced
invasive marine Indo-Pacific lionfishes, the devil firefish Pterois miles (Bennett 1828) and
the red lionfish Pterois volitans (Linnaeus, 1758), were recognized as the first truly invasive
marine fishes and a major ecosystemic threat [22,23].

Pterois miles is one of the most recent Lessepsian fish invaders in the Mediterranean
Sea. Kletou et al. (2016) and Dimitriou et al. (2019) [24,25] verified the genetic similarity of
the P. miles populations in the Mediterranean Sea and a pattern of repeated introductions
of the species in the basin into the Mediterranean originating from the northern Red Sea.
It is an Indian Ocean species with a natural geographic range that includes the marine
area spreading the from Red Sea to eastern South Africa, the Arabian Sea and the Persian
Gulf, the Gulf of Oman, the Laccadive Sea, the Bay of Bengal, the Andaman Sea and
Indonesia [26,27]. Although it was firstly recorded in the Mediterranean Sea in 1991, off
the coast of Israel [28], several years passed after the second record, when two individuals
were discovered in 2012 off the coast of Lebanon, breaking a 20-year silence [29]. Shortly
after, in 2014 and 2015, two individuals were discovered in Turkish and Cyprian coastal
waters, respectively, whereas in Rhodian waters, Greece, it was first recorded on 15th
July 2015 [24,30–33]. Many more records followed and 31 years after its first record,
P. miles is known to be present in Israel, Cyprus, Greece, Italy, Lebanon, Libya, Tunisia
and Turkey [22,29–38]. The species demonstrates one of the most rapid invasions and
expansions in the basin [5,39]. It has developed large populations in the eastern basin
but it is not enough clear which invasion stage the species attains in each Mediterranean
subregion [40,41], or whether the numbers of the species are peaking or levelling off or
decrease, as in the case of the lionfish invasion in the western Atlantic [42].

The devil firefish can be encountered in a wide range of depths [43–45] and is found
mainly associated with hard substrates, hiding in cavities of, crevices or caves but also
on Neptune grass Posidonia oceanica (Linnaeus) Delile, 1813 beds [46]. Given the fact that
other invasive species such as the porcupine sea urchin Diadema setosum Leske, 1778) and
indigenous species such as the common spiny lobster Palinurus elephas (Fabricius, 1787)
share the same refuges, non-consumptive effects of these species with P. miles may occur [47].
Of the most commonly applied fishing gear of the coastal small-scale fisheries of Greece,
the most promising for the collection of P. miles are the static nets [48]. Nevertheless, in the
western Atlantic, Morris (2012) [49] and Farquhar (2017) [50] reviewed that the most popular
removal method was spearing followed by handnets, reflecting the differentiation between
geographic regions in the use of the most appropriate fishing gear targeting lionfishes.

A number of characteristics, including early maturation and reproduction, anti-
predatory venomous defenses, and ecological adaptability of the devil firefish, combined
with the absence of adaptive responses on behalf of the prey that encounters a new preda-
tor and the overfishing of regional predators, contribute to the spectacular success of
its establishment in the invaded areas [51–57]. Undoubtedly, the species is a unique op-
portunistic predator and a generalist carnivore that may consume a wide range of fish
and crustaceans, in consumption rates that can substantially surpass the rates of prey
production [17,49,53,58–62]. On the other hand, rather few predators of the devil firefish
have been recorded within the Mediterranean Sea. These include the dusky grouper
Epinephelus marginatus, the white grouper Epinephelus aeneus, the common octopus Oc-
topus vulgaris and the silver-checked toad fish Lagocephalus sceleratus [37,63,64] with the
first three under fishing or preying pressure [65–67]. For the time being, the water tem-
perature seems to be the only effective constraint in the ongoing dispersal of P. miles
within the basin [38,68,69]. In fact, the minimum temperature the species can survive in
is 10 ◦C [56,68,70], whereas Dimitriadis et al. (2020) [38] plotted on a map the possible
expansion region of the species within the Mediterranean, based on the isotherm of 15.3 ◦C,
which is also the distribution limit for P. volitans in North Carolina, USA [69].

Throughout the literature, it is clear enough that the eradication of the species from
the invaded areas is unlikely [22,41,58,71,72]. Additionally, there are many suggestions
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for the population control of the devil firefish in the invaded areas of the Atlantic and the
Mediterranean [4,41,49,56,73–80]. However, managerial tactics, if any applied, aiming at
minimizing the negative effect and the population control of P. miles, can be viable but they
do not always bring out the desired results [58,73,74,76,78]; and in several other cases, they
proved discouraging for various reasons [12]. Irreversibly, P. miles has conquered many
regions of the basin and unless retreated or overlapped by starvation, some pathogen or
an efficient competitor [42,49,58,81], local communities depended on coastal fisheries will
have to admit the species as a potential food source and income resource and practice
targeted removals [17,48,49,73,78,79,82–84]. The idea of turning an invasive species to food
source is not a modernism [83–85].

In the western Atlantic, culling is the most successful measure to control the lionfish
culling [80,86,87]. For the Mediterranean, we believe that management actions towards
minimizing negative effects to the ecosystem of P. miles, should focus in the development
of a targeted lionfish fisheries [58], along with establishing it as a new product in the
commerce of fresh and processed fish [56]. Tailored management removal efforts of P. miles
will be improved by knowing and understanding life history information of the species
within each of the invaded areas [55,57,88–91]. While several of the prominent traits of
the species were documented in Cyprus [46], no research on the growth and mortality
has been published in Greek waters. The objectives of this study were to investigate the
population structure, sex ratio, growth, age composition, mortality, reproduction, and level
of exploitation of this species, hence providing vital information that is currently lacking in
a region affected by this Lessepsian invader. These data are essential for the development of
strategic plans to control the invasive lionfish population and specifically in the estimation
of the sustainability of this new fisheries resource.

2. Materials and Methods
2.1. Study Area and Sampling Methodology

Three areas of the eastern Rhodian coastal marine waters were selected (Figure 1).
From April 2021 to March 2022, monthly experimental fishing trials were applied in each
area, within the depth zone of 8–35 m. Two fishing vessels of the Rhodian small-scale
coastal fleet were employed (total length of 13.3 m and engine power of 106.5 KW, and total
length of 9.0 m and engine power of 7.35 KW, respectively). The fishing gear employed was
gill nets (GNSs) and trammel nets (GTRs) as illustrated in Frid and Belmaker (2019) [92]
and described analytically in a recent work [93], were applied as typically performed by
local fishers of the island. The deployment of GNSs and GTRs was conducted in the early
night hours. The former were retrieved two hours after deployment and the latter during
sunrise. In total, 36 hauls were performed with each type of fishing gear.

Total length (TL) and total weight (TW) of the collected individuals were measured
to the nearest 0.1 cm and 0.01 g, respectively. Rhodes has some qualities that make the
surrounding marine waters highly suitable for the study of non-indigenous species (NIS),
as reported previously [48]. The region is on the natural pathway of the dispersion of NIS
entering the Mediterranean Sea via the Suez Canal and constitutes the main secondary
pathway of their further westward or northward expansion. Furthermore, Rhodian coastal
waters present a high abundance of P. miles.

2.2. Statistical Analysis

Data for statistical analysis were evaluated for normal distribution with the Shapiro–
Wilk test for normality and homogeneity of variance by employing variance ratio and
Levene’s tests. Welch’s test was employed for sex comparisons when data were normally
distributed but violated the assumption of homogeneity of variance [94]. Mood’s median
test was used for comparisons where data failed both assumptions of normality and
homogeneity [95].
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The chi-square goodness-of-fit test [96] was employed to assess the null hypothesis of
equal proportions between male and female ratio and compare our findings with published
literature. Statistical analysis was performed with Jamovi (Ver. 2.4.6) [97], at an alpha level
of 0.05. According to Munro and Pauly (1983) [98], the length–weight relationship was
calculated separately for females, males, and combined sex by fitting the exponential curve
to the data, where TL is the total length (cm), TW is the total weight (g), “a” (growth factor)
is the intercept of the curve, and “b” is the slope (allometry coefficient) (Equation (1)). The
standard Student t-test was employed to assess allometric relationships, isometry (b = 3)
or allometry (b ̸= 3). The two-samples t-test was used to compare the equations between
the sexes.

TW = a × TLb (1)

Length frequency distributions calculated per 1 mm size class were divided into
age groups using Bhattacharya’s approach [99] to identify the mean of length for each
cohort [100,101], with the use of the FiSAT II program (FAO, Rome, Italy) (version 1.2.2), as
in a previous work [46].

A catch curve based on net selectivity was constructed by applying linear regression
fitted to ascending line of input points generated from a plot of the capture probability
against length group to calculate the length at first capture (Lc) (50% capture probability)
and values of the lengths at 25% (L25) and 75% (L75) capture probabilities.
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2.3. Growth

Growth parameters were calculated using the Von Bertalanffy (1938) [102] growth
equation (Equation (2))

Lt = L∞ ×
(

1 − e −k×(t−t0)
)

(2)

where k (growth coefficient) is the rate at which the asymptotic length, L∞, is approached, t
is the age in years and t0 is the hypothetical age at which the fish has zero length.

The index of growth (in length) performance [98] was derived using the von Bertalanffy
parameters (Equation (3))

φ′ = logK + 2 × logL∞ (3)

The maximum lifespan was estimated according to Froese and Binohlan (2000) [103]
(Equation (4)).

tmax =
2.9957

k
+ t0 (4)

The inflection point (time when growth rate starts to decrease) was estimated according
to Ricker (1979) [104] (Equation (5)).

Inflection point = t0 +
ln3

K
(5)

2.4. Mortality and the Exploitation Rate

Natural mortality was calculated using the updated Hoenignls estimator according to
Then et al. (2015) [105] (Equation (6)).

M = 4.899 × tmax
−0.916 (6)

Total mortality (Z) was calculated using Beverton and Holt’s (2012) [106] empirical
equation (Equation (7)).

Z = K × (L∞– Lmean) /
(
Lmean − L′) (7)

where Lmean is the mean length of all fish in a sample representing a steady-state population
and L′ is the cut-off length or the lower limit of the smallest length class included in
the computation.

The length-converted catch curve [107] was further employed to estimate the total
mortality rate (Z).

The annual fishing mortality rate (F) was obtained by subtracting natural from total
mortality according to Sparre and Venema (1998) [101] (Equation (8)).

F = Z − M (8)

The exploitation rate (a measure of the number of fish that are caught from a population
each year) was calculated as the ratio of fishing mortality to the total mortality [107]
(Equation (9)).

E = F/Z (9)

The length class with the highest biomass (Lopt) (optimum length) was calculated
according to (Beverton, 1995) [108] (Equation (10)).

Lopt =
3 × Linf

3 + M
K

(10)

2.5. Reproduction

The length at which 50% of individuals in a population have reached sexual maturity
is known as the onset of sexual maturity (L50). Sex and maturity stage were determined
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macroscopically for each specimen. Fish were deemed mature if they had developing, ripe,
or spent ovaries. Immature/resting fish, considered non-reproductive, were assigned a 0
while mature fish were assigned a value of 1. To model the link between fish length and the
likelihood of sexual maturity, a binary logistic regression was fitted to the data [109]. The
latter is a method used to model the relationship between one or more independent vari-
ables and a binary dependent variable, which is transformed using the logit transformation
into a probability ranging from 0 to 1.

Each gonad was removed and was weighed after removal of excess water. The
reproductive cycle was assessed seasonally with the use of the gonad-somatic index (GSI)
calculated according to Ulman et al. (2021) [110] (Equation (11)).

By examining the seasonality of the gonadosomatic (GSI) (Equation (11)) for each sex,
the spawning cycle of the species was analyzed in the study area.

GSI (%) =
GW
TW

× 100 (11)

where GW is the gonad weight, LW is the liver weight and TW is the total weight.
The annual recruitment pulses and their relative strength were determined from a

routine implemented in FiSAT II software using the time series length–frequency data
and growth parameters (Linf, K and t0), which involves the backward projection of length
frequencies onto time axis based on growth parameters [111].

Fulton’s condition factor (K) was further employed as an estimate of body condition
in fish (Equation (12)) according to Fulton (1904) [112].

K = 100 × Weight (in g)

Length (in cm)3 (12)

2.6. Relative Y/R and B/R Analysis: Knife-Edge Selection

The relative yield per recruit (Y′/R) was estimated using the knife-edge method of
Beverton and Holt’s model (1957) [113], by which the optimum exploitation rate (Eopt)
and the maximum exploitation rate (Emax) were obtained. Further biological reference
points including optimum length (Lopt), optimum fishing mortality (Fopt), fishing mortality
limit (Flim) and the optimum exploitation rate (Eopt) were estimated according to previous
research [108,114,115].

3. Results
3.1. The Sex Ratio

A total of 363 individuals (184 females and 179 males) were caught with a M:F sex ratio
of 1:1.03 in favor of females. The sex ratio did not significantly depart from 1:1 (x2 = 0.10,
p > 0.05), but a significant departure from reported male to female ratio of 0.649:1 [46] in
the island Cyprus (x2 = 13.95, p < 0.001) was identified.

3.2. Population Structure

Significantly greater total length (Welch’s test p < 0.001) and weight (Mood’s Median
test, p < 0.05) were indicated for males.

The range of total length among sexes (Figure 2) was higher for males (37.8 mm)
compared to females (34.3 mm), with a similar trend indicated for total weight (787.8 gr
and 636.0 gr) for males and females, respectively (Figure 3).

3.3. Length–Weight Relationship

A highly significant positive allometry was indicated for the total and male population
(p < 0.001) and a significant positive allometry was indicated for the female population
(p < 0.05) (Figure 3). No significant difference was observed between the male and female
length–weight relationship.
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3.4. Age Composition

The dominant cohort was the three-year class, comprising 41.5% of the population,
out of the five age classes identified (Table 1).

3.5. Reproduction

The highest reproductive intensity was exhibited during summer followed by autumn
(Figure 4A) with significant differences observed between spring–summer and spring–
autumn and similarly between winter–summer and winter–autumn.
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Table 1. Population characteristics of the identified age groups for the total P. miles population.

Age Group Mean Total Length (cm) Standard Deviation Population %

1 18.12 0.59 2.79
2 21.32 0.84 14.90
3 25.01 1.39 41.49
4 28.35 1.20 32.40
5 33.52 1.16 8.42
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The annual recruitment pattern of P. miles (Figure 5) indicated that recruitment oc-
curred throughout the year with two prominent peaks of different magnitudes. The minor
one occurred from January to June with a peak in January (12.12%), while the major one
happened from August to November with a peak in October (24.29%)
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The onset of sexual maturity (L50) for the total population was estimated at 22.44 cm
in total length (2.1 years) and 21.92 (1.9 years) and 22.90 (2.2 years) for males and fe-
males, respectively (Figure 6). The inflection point was estimated at 4.31 years for the
total population.
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Figure 6. Binary logistic regression for the proportion of mature P. miles in relation to its total length
(red line indicates model fit, green dashed line indicates 95% C.I., blue dashed line indicates L50).

3.6. Condition Factor

The Fulton condition factor did not exhibit large fluctuation throughout the study
period (1.33 ± 0.17) with the highest values exhibited during summer and autumn (Figure 7)
and the lowest in spring and winter.
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3.7. Growth and Mortality

The Von Bertalanffy growth equation for the total population, was estimated as:

Total length (cm) = 45.35 ×
(

1 − e −0.1875(age+1.5506)
)

The growth index (Φ′) was estimated as 2.59, longevity at 14.4 years and inflection
point at 4.31 for the total population.

Natural mortality (M) was estimated as 0.43, total mortality (Z) as 0.83 and fish-
ing mortality (F) as 0.41. The exploitation ratio (E) was estimated at 0.48, indicating an
underexploited population.
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3.8. The Probability of Capture

The probability of capture was estimated at 25% (LC25), 50% (LC50), and 75% (LC75)
levels as 22.05, 23.03, and 23.98 cm, respectively (Figure 8), with age at a 50% probability of
capture (t50) being estimated at 2.2 years.
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3.9. Relative Y/R and B/R Analysis: Knife-Edge Selection

The yield per recruit (Y/R) against the fishing mortality and the exploitation rate
are shown in Figures 9 and 10, respectively. Results of the yield-per-recruit analysis and
biological reference points are shown in Table 2.
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Table 2. Relative yield/recruit analysis (knife edge) and biological reference points of the population.

E Y/R B/R

0.01 0.006 0.852
0.20 0.011 0.714
0.30 0.015 0.585
0.40 0.019 0.467
0.50 0.022 0.360
0.60 0.024 0.264
0.70 0.025 0.180
0.80 0.026 0.108
0.90 0.026 0.048
0.99 0.026 0.004

Biological reference points Y/R B/R

Emax 0.862 0.023 0.009
E0.1 0.707 0.025 0.024
E0.5 0.371 0.017 0.017
Fopt 0.424 0.021 0.051
Flim 0.553 0.023 0.042
Eopt 0.500 0.022 0.045

E, the exploitation rate; Y/R, yield per recruit; B/R, biomass per recruit; Emax, the exploitation rate which
produces the maximum yield; E0.1, the exploitation rate at which the marginal increase in relative yield per
recruit is 1/10th of its value at E = 0; E0.5, value of E under which the stock has been reduced to 50% of its
unexploited biomass; Fopt, the optimum fishing mortality; Flim, the fishing mortality limit; Eopt, the optimum
exploitation rate.

4. Discussion

Biological invasions constitute one of the major negative impacts of human interven-
tions in ecosystems [116] and that of the Mediterranean Sea is one of the most invaded areas
with alien species [117], which influenced biodiversity, ecosystem services and human
health [15,17,118]. In regard to economy, it was estimated that within the last 30 years the
aquatic invasive species induced a total cost of USD 27.3 billion [119]. A wide range of
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variables, such as temperature, salinity, habitat variation, food availability, maturity stage,
fishing season, high fishing mortality, and genetic factors, affect a teleost’s sex ratio, GSI
and spawning period [120].

In the present study, the sex ratio was estimated at 1:1.03 (M:F). In a study from
Cyprus [4] on 268 lionfish individuals (sexed: 82 males, 127 females), caught in the period
September 2017–August 2018, the sex ratio was 1:1.55. A ratio of 1:1.54 was reported
in another study [46] from the same area, where 206 individuals of P. miles were sexed
as 81 males and 125 females. Both are significantly different than the sex ratio in the
present study. Similar studies from the Atlantic reported a M:F ratio of 1:1 [88,121]. The
significance of the sex ratio to the population size of the species was pointed out by Edwards
et al. (2014) [88], who emphasized the need to remove a sufficient number of females in
order to make lionfish removal efforts effective in terms of suppressing the populations of
the species.

The devil firefish individual weight can be differentiated because of (a) the increased
predation and the gonad development, combined with the reduced energy consumption
for the search for prey, (b) the selectivity of the fishing gear, (c) the topography (substrate)
of the fishing area and (d) the collection depth. In Cyprus, out of the 268 P. miles individuals
studied, the largest in length was a male with TL 37.1 cm and TW 755.0 g [4]. The heaviest
individual was a male with TW 850.0 g and TL 36.8 cm. In another study from Cyprus, the
TL range of the P. miles individuals was 8 to 37 cm with a frequency peak in the 20–25 cm
length class [46].

The establishment of management measures for a species presupposes knowledge
on the structure of its populations. Through the determination of the distribution of sizes
and ages it comes handy the determination of the rate at which a species grows, so that
size is studied as a function of age. Based on otolith examination, Kleitou et al. (2019) [4]
reported that P. miles grows rapidly and can reach 20 cm within the first year of life, a
finding that is almost in agreement with the results of the present study, where the species
reaches 18 cm in total length. Savva et al. (2020) [46] distinguished four age classes, with
onset of sexual maturity reached at 16.3 cm at the first age class, whereas, in the present
work, five age classes were identified with the onset of sexual maturity (L50) for the total
population estimated at 22.44 cm in total length at the second age class. The maximum
age identified in the present study was five years old. In the Atlantic, Gardner (2012) [122],
in reference to a study from the Cayman Islands, reported that individuals of TL 19 cm
aged between zero to two years. In the present study, the two-year-old individuals attain a
TL of 21–22 cm. Further research is necessary for the Rhodian and Mediterranean waters
with the use of otoliths compared with the present data to establish potential difference
between the two methods. In the Mediterranean, otoliths were used for age estimation only
from one study [4]. In the Atlantic, there are considerable literature data involving lionfish
otoliths [57,91,123].

A significant life history trait is knowledge of the reproductive period. Analyzing
changes in body weight, and gonadal development can help to understand energy trade-
offs in the development of reproductive strategies, particularly in the inverse relationship
between the hepato-somatic index (HSI) and the gonadosomatic index (GSI), while condi-
tion factor (CF) indicates the fish’s relative condition [110]. In the present study, the highest
overall reproductive intensity of P. miles was exhibited during summer. The highest value
of GSI was obtained in July followed by August and September, a straight-forward proof
that P. miles in Rhodes is sexually mature during the summer months. The prominent drop
in the GSI during May (Figure 4B) can attributed either to a large variability within the
population (sampling bias) or a primary spawning occurrence in the end of spring, The
second hypothesis is further supported by the slight drop in FCF, which was observed
during May (Figure 7). The large confidence intervals that were observed on Figure 4 (and
Figure 7) could be attributed to the presence of large variability within the population
and/or temporal or spatial variation.
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According to a recent study [46], reproduction in Cyprus occurs in the summer.
Mouchlianitis et al. (2021) [124] are the only researchers that examined all aspects of
P. miles reproductive biology in the eastern Mediterranean. These authors reported that the
species exhibited active spawning only in June and July, but females capable of spawning
were present throughout autumn.

In the western Atlantic, a few years earlier, Gardner (2012) [122], in 1872 lionfish
individuals, found that GSI presented a significant monthly variation with two peaks
during the year, that coincided with maximum and minimum values of sea temperature.
The highest GSI value they recorded for females was 6.19. Furthermore, the same authors
report that after reproductive maturity, lionfish appeared to spawn year-round, a conclusion
supported by the high GSI values found in Morris (2009) [125], with a spawning frequency
of 2.42 days. From the same area, there are reports of lionfish breeding throughout the
year, based on the presence of females in the fifth stage of maturity [54,55,125]. In Bermuda,
actively spawning fish were identified only between certain summer and autumn months,
even though females of the P. miles and P. volitans were capable of spawning year-round [91].
However, the findings from our study are not in accordance with those from the tropical
Caribbean, where lionfish reproduction is characterized by two major spawning peaks that
occur during intervals of stable cool seawater temperatures (27 ◦C, December–February)
and stable warm seawater temperatures (30 ◦C, July–August). Temperature has been shown
to be a moderating factor in the peak spawning period of the species in the Mediterranean as
well as in the Atlantic [91,122]. It is estimated that climate change and the resulting further
temperature increase in the Mediterranean will lead to prolongation of the spawning period
of lionfish. Food availability also seems to play an important role, with photoperiod and
the moon phases expressed through tidal cycle needing further investigation [122].

According to Stergiou and Moutopoulos (2001) [126], the length–weight relationship
is crucial to fisheries biology and is very helpful in research that evaluate fisheries. It
is important to record the length–weight relationships for established invasive species
because they reveal how the population has changed through time and space in the invaded
habitat [127]. In contrast to a previous study [60] on Rhodian devil firefish individuals
that reported a “b” value of 2.896, positive allometry was identified in our study. The “b”
values reported in Iskenderun Bay [128] and in Cyprus [46] did not significantly differ
from our findings. The L–W allometric relationship demonstrated a very rapid rise in
weight with length, suggesting that the lionfish gains weight as it ages and may perhaps
become substantially stouter or have a deeper body. The findings of the current study were
consistent with those of studies conducted in the western Atlantic invasive range [127],
and the minor differences between studies are typically attributed to sample size, season,
feeding habits, stage of maturity, environmental factors, and the rapid growth in early life
stages [129,130].

The estimation of growth parameters (L∞, K, t0), age, mortality, and exploitation
rates, are considered fundamental and constitute the first step in fishery stock assessment.
Asymptotic length (L∞) was similar in comparison to Daghan and Demirhan (2020) [128],
but higher than the one reported from Cyprus [46]. K was similar to that described in the
former study [128] and lower that in the latter [46]. The t0 value in the present study is
higher than in the aforementioned studies. As widely recognized, a number of factors,
including environmental conditions (such as temperature and salinity), habitat variability,
the latitude effect, food availability, maturity stages, fishing season, sampling methodology,
the selectivity of fishing gear, and genetic variations, may be contributing to observed
differences in L–W relation, age, growth, and mortality values [131–136].

Mortality estimates associated to growth parameters are important to understand
population dynamics [137]. The current results suggest that fishing mortality and natural
mortality of P. miles in the study area was equal to 0.41 and 0.43, respectively, suggesting
an exploitation rate lower than 0.5 (E = 0.48), which is an indication of an underexploited
population. The estimated optimum fishing mortality and fishing mortality limit as 0.42
and 0.5, respectively, indicated that there is potential for further fishing mortality increase
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if the aim was to commercially exploit the population. This indication is further supported
by the difference between the optimum exploitation rate and the current exploitation rate,
which were estimated as 0.5 and 0.48, respectively. Given the edible flesh of P. miles, it is
thus clear that the species has the potential of becoming a marketable fish.

Currently, in Rhodes, the number of fish markets the species is already sold in is limited
(EUR 10 per kilo), [48]. Nevertheless, the fact that the devil firefish is already marketed is
an encouraging practice and it should be adopted in more areas and in a more intense pace.
The slow rates of its incorporation in the live fish commerce can be majorly attributed to
the bad reputation P. miles received [80,138,139], which resulted in inhibiting its demand
among potential consumers throughout Greece and possibly other Mediterranean countries.
The bad reputation is attributed to the venomous spines (12–13 dorsal, 3 anal and 2 pelvic
spines), which contain apocrine-type venomous glands [125].

To restore the negative image of the species and place it among other commercially
important fishery products, a lot of work must be carried out. Lionfish gastronomy and
tasting events held in multiple cities and places, such as cities with high tourist traffic,
hotels, restaurants, the street and more, will majorly assist in that direction. Simultaneously,
we see as an important element in the promotion of the devil firefish as a food source, the
consumer’s, and retailer’s information that the goal is a population size decrease in the
species and not the discovery of a new addition to the menus. According to the second
management measure of the Article 19 of the EU Regulation No 1143/2014 [140] “The
commercial use of already established invasive alien species may be temporarily allowed
as part of the management measures aimed at their eradication, population control or
containment, under strict justification and provided that all appropriate controls are in
place to avoid any further spread”.

This new fishing resource could have the potential of substantially contribute to
the economy of the coastal small-scale fisheries of the eastern Mediterranean, where the
populations of the lionfish are thriving [48,79,84]. However, caution is needed because
a new fisheries resource involves risks. According to Nuñez (2012) [84] a new fisheries
resource needs adequate orthological management in order to be sustainable. Creating
a market for a certain species can produce uncontrollable pressure to maintain it and
if this species turns out to be an economic resource there is a possibility of intentional
introduction of the species to other, uninvaded areas [84]. Additionally, a continuous
monitoring plan of the catches is crucial for the sustainability of the P. miles fisheries
exploitation [79]. Morris (2012) [49] summarized all strategies and issues referring to
motivation of lionfish capture. Among them is to clarify the negative perceptions about
the dangers of lionfish, educate the public on seeing it as a food source and as a “green
alternative” in relevance to other fish species, develop marketing strategies and many
more. At the same time, measures and regulations aiming to benefit the ecosystem have
to be adopted [5,41,49,79] so that the combination of the lionfish fisheries and the holistic
protection of certain coastal areas (e.g., fishing restrictions, creation of marine protected
areas, invasive species targeted fisheries within protected sites, licensing to fish for lionfish
with specially designed spearguns and bottom traps even within marine protected areas),
may contribute efficiently towards the recovery of the marine ecosystem [41,79]. We believe
that these solutions are the most realistic and direct for Rhodian and by extension the
Greek waters.

5. Conclusions

In the coastal waters of Rhodes, the creation of large populations of the devil firefish
seems to be facilitated. Five age classes were identified and the onset of sexual maturity
(L50) of the population was estimated at 22.44 cm in total length (second age class), and the
maximum age was estimated at five years old. The reproductive intensity of Pterois miles
was highest during summer followed by autumn. According to the L–W allometric rela-
tionship, the species gains weight as it ages and may perhaps become substantially stouter
or have a deeper body. The estimated optimum fishing mortality and fishing mortality
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limit indicate that P. miles is hardly exploited in Rhodian waters and if the aim was to
commercially exploit this local population there is substantial potential for further increase
in the catches. The current study provides new information on the population structure
and life history characteristics of the invasive P. miles in Rhodian coastal waters, which
is essential for developing and implementing management strategies. In order to avoid
any adverse impacts on the ecosystem, the exploitation of the species as a new fishery
resource in the Mediterranean has to take under consideration all the important parameters,
including growth, the sex ratio, length–weight relationship, age, reproductive strategies,
mortality and the exploitation rate. This is the first study presenting the mortality rates
of the species, hence assisting in the awareness of the status of natural stocks in eastern
basin. Nevertheless, more research is required to cover dynamic parameters concerning
the devil firefish.
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