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Abstract 32 

A combination of homologous single-chain recombinant follicle-stimulating hormone 33 

(sdrFsh) and luteinizing hormone (sdrLh) was administered to 1-year old, pre-pubertal 34 

greater amberjack (Seriola dumerili), to induce precocious gametogenesis.  The minimum 35 

effective sdrFsh dose to induce steroidogenic activity was found to be 10 µg kg-1, based on 36 

the elevation of plasma testosterone (T) and 11-ketotestosterone (11-KT) in males.  The same 37 

dose had only a mild effect on plasma T and 17β-estradiol (E2) in females.  A combination of 38 

sdrFsh/Lh was then administered weekly for 12 weeks, beginning at the expected onset time 39 

of gametogenesis in greater amberjack in the Mediterranean Sea (March).  Mean plasma T, 40 

11-KT and 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) increased significantly in 41 

sdrFsh/Lh-treated males compared to controls, and spermatogenesis and spermiation were 42 

completed at the end of the 12-week treatment (June), with sperm being collectable from all 43 

individuals.  The sdrFsh/Lh-treated males produced sperm of comparable or better sperm 44 

concentration and motility characteristics than naturally matured hatchery-produced F1 males 45 

reared in sea cages, and higher than that of both captive-reared wild fish in the Mediterranean 46 

Sea and F1 males from the Atlantic Ocean.  On the contrary, females did not respond to the 47 

treatment, their plasma sex steroid hormones remained unchanged during the study, and no 48 

vitellogenic development was observed at the end of the 12-week sdrFsh/Lh treatment.  49 

Results suggest that shortening the time of puberty to 2 years of age can be achieved in males 50 

but not in female greater amberjack.  Further research should examine the cause of the 51 

unresponsiveness of pre-pubertal females to sdrFsh/Lh, and if it may be possible to stimulate 52 

oogenesis in older, pre-pubertal females. 53 

 54 
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1. Introduction 57 

Although the greater amberjack (Seriola dumerili) has been targeted by the aquaculture 58 

sector worldwide, the production of this species lags considerably compared to its congeners; 59 

for instance, Japanese yellowtail (Seriola quinqueradiata) production in 2021 in Japan was 60 

estimated at 132,700 mtn, compared to only 172 and 140 mtn of greater amberjack produced 61 

in Greece and Spain, respectively (OECD, 2024).  Similarly, the rearing of yellowtail 62 

kingfish (Seriola lalandi) has expanded in many areas around the world, often using 63 

recirculating aquaculture systems (RAS) (Horstmann et al., 2023; Nocillado et al., 2019).  64 

The incomplete control of the reproductive cycle of greater amberjack (Corriero et al., 2021a; 65 

Fakriadis et al., 2020b; Jerez et al., 2017; Nyuji et al., 2019; Sarih et al., 2018) and its failure 66 

to spawn spontaneously in captivity have contributed to the slow incorporation of this species 67 

in aquaculture production (Sicuro and Luzzana, 2016).  As a result, much effort for this 68 

species has been dedicated to developing efficient spawning induction protocols for the 69 

industry (Corriero et al., 2021a). 70 

In greater amberjack from the wild, the onset of puberty usually takes place between 3-71 

5 years of age, with females developing reproductively later than males (Corriero et al., 72 

2021a; Harris et al., 2007; Marino et al., 1995).  Late reproductive maturation is a beneficial 73 

biological characteristic for grow-out, as it allows harvesting the fish before growth is 74 

affected negatively by investment of nutrients in gonad development (Zupa et al., 2017b).  In 75 

comparison, well-established species in Mediterranean aquaculture such as gilthead seabream 76 

(Sparus aurata) and European seabass (Dicentrarchus labrax) reach maturity at a younger 77 

age and often precociously under aquaculture conditions (Carrillo et al., 2015; Meiri et al., 78 

2004).  On the other hand, the long time required by greater amberjack to reach maturity 79 

poses problems in broodstock management; significant investments in infrastructure, human 80 

and feed resources become unavoidable before the stock can contribute to the productive 81 
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cycle (Taranger et al., 2010).  Recently, the first report on the timing of puberty in F1 82 

hatchery-produced greater amberjack maintained in sea cages indicated that, although a very 83 

limited fraction of males matured precociously, the totality of the population matured at 3 84 

years of age, while females were identified as spawning-capable for the first time at 5 years 85 

of age (Lancerotto et al., 2024), essentially mirroring the maturational patterns observed in 86 

the wild.  Nonetheless, these captivity-maturing females failed to respond to the established 87 

protocol for spawning induction using gonadotropin-releasing hormone agonist (GnRHa) 88 

(Fakriadis et al., 2020a; Fakriadis et al., 2020b), whereas the administration of recombinant 89 

Seriola dumerili follicle-stimulating (sdrFsh) and luteinizing hormone (sdrLh) employed 90 

recently enhanced gametogenesis and achieved maturation and spawning of good quality 91 

eggs (Lancerotto et al., 2025).  Given this recently demonstrated potential of sdrFsh and 92 

sdrLh to induce gametogesis, and the long period before natural reproductive maturation 93 

(Lancerotto et al., 2024), artificial advancement of puberty could be achieved using 94 

sdrFsh/Lh treatment.  Advancement of puberty may reduce generation time in breeding 95 

selection programs and speed up domestication, which are prerequisites in modern 96 

aquaculture for optimizing rearing methods, and improving growth, feed efficiency, disease 97 

resistance and final product quality of a species (Boudry et al., 2021) (Teletchea, 2021). 98 

Therefore, efforts to shorten generation time in late-maturing species by advancing puberty 99 

have become more and more frequent in aquaculture (Banh et al., 2021; Guzmán et al., 100 

2015). 101 

Due to the fundamental role of Fsh and Lh in the regulation of gametogenesis (Levavi-102 

Sivan et al., 2010; Lubzens et al., 2010; Mylonas et al., 2010; Schulz et al., 2010), it is not 103 

surprising that their recombinant forms have been tested in different species as a tool to 104 

reduce the time necessary to reach the age of first maturity (Moles et al., 2020). The most 105 

convincing example is provided by freshwater eels (Anguilla spp), due to their permanent 106 
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existence in a pre-pubertal state under aquaculture conditions (Vidal et al., 2004).  107 

Recombinant Fsh/Lh have been employed extensively in the past two decades; diverse 108 

expression systems have been tested (Kazeto et al., 2008; Ohta et al., 2007), both in vitro 109 

(Nguyen et al., 2022) and in vivo (Kobayashi et al., 2010), in males (Penaranda et al., 2018) 110 

and females (Nguyen et al., 2020), to investigate the possibility of stimulating reproductive 111 

development and inducing maturation.  Recently, the induction of vitellogenesis and the 112 

achievement of maturation in European eel (Anguilla anguilla) was obtained with the 113 

administration of rFsh and rLh (Jéhannet et al., 2023).  Attempts to induce precocious 114 

gonadal development in immature individuals have been conducted also in an increasing 115 

number of other species. To mention just a few, in reproductively immature meagre 116 

(Argyrosomus regius) males, the administration of specific rFsh for six weeks triggered testis 117 

growth and enhanced spermatogenesis (Zupa et al., 2023), whereas in immature tiger grouper 118 

(Epinephelus coioides) females, the repeated administration of rFsh and rLh were successful 119 

in inducing ovarian development (Chen et al., 2012).  120 

In the present work, the combination of sdrFsh and sdrLh administration, which has 121 

already been used successfully in enhancing gametogenesis and spawning in adult greater 122 

amberjack males and females (Lancerotto et al., 2025), was evaluated for its potential in 123 

stimulating spermatogenesis and oogenesis in 1-year old, pre-pubertal, hatchery-produced 124 

greater amberjack, with the objective of advancing puberty and obtaining viable gametes 125 

earlier, for selective breeding programs.  126 

 127 

2. Materials and methods 128 

The employed experimental protocol received approval from the National Veterinary 129 

Services of the Region of Crete, Hellenic Republic (AP31326).  All procedures involving 130 

animals were conducted in accordance with the “Guidelines for the treatment of animals in 131 
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behavioral research and teaching” (Anonymous, 1998), the Ethical justification for the use 132 

and treatment of fishes in research: an update (Metcalfe and Craig, 2011) and the “Directive 133 

2010/63/EU of the European parliament and the council of 22 September 2010 on the 134 

protection of animals used for scientific purposes” (EU, 2010).   135 

 136 

2.1 Fish husbandry  137 

At one year of age (June 2021), fish (n = 75) were transferred from sea cages located at the 138 

facilities of Argosaronikos Fishfarm S.A. (Salamina Island, Greece), to 2-m3 indoor tanks at 139 

the AQUALABS of the Institute of Marine Biology, Biotechnology and Aquaculture 140 

(IMBBC) of the Hellenic Centre for Marine Research in Crete, Greece.  Tanks were exposed 141 

to a natural photoperiod (roof windows) and were supplied with 1-μm filtered borehole 142 

seawater (for biosecurity reasons, to avoid pathogens entering the rearing tanks) at a constant 143 

temperature of 19 ± 0.5°C.  Fish were then used in two consecutive experiments (see sections 144 

below) to test single-chain Seriola dumerili gonadotropins (sdrGths) produced by Rara Avis 145 

Biotec S.L. (Valencia, Spain), following protocols utilized previously for other fish species 146 

(Chauvigné et al., 2017; Jéhannet et al., 2023; Penaranda et al., 2018; Ramos-Júdez et al., 147 

2021; Zupa et al., 2023) and presented in detail recently (Lancerotto et al., 2025). 148 

 149 

2.2. Test of bioactivity in vivo  150 

To test the steroidogenic activity of sdrFsh/Lh on pre-pubertal greater amberjack and to 151 

determine their effective dose to be used later in a puberty-advancement experiment, single-152 

chain recombinant follicle-stimulating hormone (sdrFsh) was used in a dose-response 153 

experiment conducted in the off-reproduction season (October 2021), when the fish were 16-154 

months-old and had a mean ± SD body weight of 654 ± 14 g.  Unsexed fish were assigned to 155 

one of four experimental groups (n=12).  Although a male: female ratio of 1:1 was expected 156 
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(Papadaki et al., 2021), the sex of the fish was unknown at the time of treatment, and it was 157 

determined at the conclusion of the experiment when they were sacrificed.   158 

The fish (individually tagged with a Passive Integrated Transponder, PIT tag) received 159 

either one of three dosages of sdrFsh (5 µg kg-1, sdrFsh5; 10 µg kg-1, sdrFsh10; 15 µg kg-1, 160 

sdrFsh15) dissolved in 2% saline solution or sham injections (saline solution, Control), every 161 

7 days over 6 weeks (total of six treatments).  At the end of the sdrFsh administration, fish 162 

were euthanized with a lethal dose of anesthetic, and body weight (BW, g) and gonad weight 163 

(GW, g) were measured to estimate the gonadosomatic index (GSI, %; [GW/BW]x100).  164 

After dissection of the gonads, a small fraction was preserved in a fixative solution of 4% 165 

formaldehyde:1% glutaraldehyde (4F:1G) for histological analysis.  Blood samples were 166 

obtained from the caudal vasculature using heparinized syringes every 3 weeks.  Blood was 167 

centrifuged for 15 min at 5,000 rpm and the supernatant plasma was stored at -80C until 168 

analyzed for plasma levels of sex steroid hormones with liquid chromatography-tandem mass 169 

spectrometry (LC-MS/MS).  170 

 171 

2.2 Stimulation of gametogenesis using sdrFsh/Lh treatment  172 

A combined administration of sdrFsh/Lh was conducted during the reproductive season 173 

of greater amberjack in the Mediterranean Sea (March to June, 2022), when pre-pubertal 174 

greater amberjack were 20-months-old.  The utilized doses for sdrFsh and sdrLh were based 175 

on the bioactivity of sdrFsh determined above -assuming that the effective dose of sdrLh 176 

would be similar to that of sdrFsh- and the relative doses used in previous works using 177 

rFsh/Lh for similar purposes in other fish species (Chauvigné et al., 2017; Jéhannet et al., 178 

2023; Penaranda et al., 2018; Ramos-Júdez et al., 2021; Zupa et al., 2023).  The fish were 179 

maintained in 2-m3 tanks supplied with filtered borehole water at a constant temperature of 180 

19 ± 0.5°C and exposed to a natural photoperiod (roof windows).  As before, unsexed fish 181 
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were assigned to the experimental groups, and the sex of the fish was determined at the 182 

conclusion of the experiment when the fish were sacrificed or their sex could be identified by 183 

obtaining a gonadal biopsy (oocytes or sperm).  Two experimental groups were created in 184 

different tanks.  Fish from the first group (Control, n = 10, 1002 ± 85 g) were given an 185 

injection of saline solution, and fish from the second group (sdrFsh/Lh, n = 15, 1026 ± 36 g) 186 

were treated with increasing doses of sdrFsh (8, 12 µg kg-1, Week 0,1-11) and sdrLh (10 µg 187 

kg-1, week 1-11), at weekly intervals for 12 weeks (Fig. 1). Blood samples were collected 188 

every 3 weeks, to measure plasma levels of sex steroids using LC–MS/MS.  189 

At the end of the experiment, milt samples and ovarian biopsies (when possible) were 190 

collected to assess the reproductive development of the fish, or fish were sacrified and gonads 191 

were excised for histological processing.  Ovarian biopsies were collected with the use of a 192 

catheter inserted at the opening of the genital pore (Pipelle de Cornier, Laboratorie CCD, 193 

France).  Sperm for sperm quality evaluation was collected by applying abdominal pressure, 194 

when possible, or by cannulation of the genital pore when necessary (Pipelle de Cornier, 195 

Laboratorie CCD, France).  Collected gonads and biopsies from all samplings were preserved 196 

in a solution of 4F: 1G for histological analysis.  Sperm samples (100-200 μL) were stored at 197 

4°C until analyzed using computer-assisted sperm analysis (CASA, ISAS, Spain).  Blood was 198 

collected, centrifuged at 5,000 rpm for 15 min at +4°C and the obtained plasma was 199 

maintained at -80°C until hormonal analysis. 200 

 201 

2.3 Histological analysis 202 

The dissected gonads were dehydrated in a 70-95% ethanol series and embedded in 203 

glycol methacrylate resin (Technovit 7100, Heraus Kulzer, Germany). Serial sections of 4 204 

µm were obtained using a semi-automatic microtome (Leica RM2245, Germany), and 205 

histology slides were stained with methylene blue/azure II/basic fuchsin (Bennett et al., 1976) 206 
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and examined under a light microscope (50i Eclipse, Nikon, Japan). Eventually, 207 

microphotographs of the stained content of the ovary were taken using a digital camera 208 

(Progres, Jenoptik AG, Germany). 209 

 210 

2.4 Measurement of plasma sex steroids 211 

The extraction and analysis of steroid hormones was performed according to Papadaki 212 

et al. (2021) with a few modifications. The following sex steroids were included in the panel 213 

of analytes: testosterone (T), 17β-estradiol (E2), 11-ketotestosterone (11-KT), and 17α,20β-214 

dihydroxy-4-pregnen-3-one (17,20β-P). Furthermore, instead of N,N-dimethyl-L-215 

phenylalanine, 13C-labelled estradiol, testosterone, and progesterone (>98% purity) that were 216 

purchased from Cambridge Isotope Laboratories Inc (Tewksbury, MA, USA), were used as 217 

internal standards for better quality control and more accurate quantification of hormones. A 218 

mixture of those four compounds in varying concentrations (10 to 85 pg μL-1) was prepared 219 

in methanol:water 1:1 and 10 μL of this solution were added to the serum samples prior to 220 

solid phase extraction. Subsequently, the preparation of samples and the analysis of 221 

hormones by LC-MS/MS was implemented following the same procedures as those described 222 

in our previous study.  223 

 224 

2.5 Sperm quality analysis  225 

For Computer Assisted Sperm Analysis (CASA, ISAS, Spain), sperm was activated in 226 

seawater containing 2% bovine serum albumin (1:201 or 1:334) to obtain 200–300 cells in 227 

the field.  A reusable counting chamber with a fixed depth (SpermTrack, ISAS) was used to 228 

record spermatozoa movement using a digital camera at 100 frames per second (fps) attached 229 

to a light microscope (Primo Star, Zeiss, Germany) under 100× magnification.  Spermatozoa 230 

movement recording started 15 s after activation and was stopped when less than 5% of the 231 
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spermatozoa in the field of view were showing forward motility.  The CASA included the 232 

following parameters: sperm density (number of spermatozoa ml-1 of sperm), duration of 233 

forward spermatozoa motility of ≥ 5% of the spermatozoa in the field of view (motility 234 

duration, min), curvilinear velocity (VCL), straight-line velocity (VSL), average path 235 

velocity (VAP) (μm sec-1), motile cells, progressive cells (> 80% straightness, STR), rapid 236 

cells, and STR (%).  The software settings were adjusted to 1 to 90 μm for the head area; 237 

VCL < 10 μm sec-1 to classify a spermatozoon as immotile; and spermatozoa were 238 

considered rapid when VCL was higher than 100 μm sec-1. 239 

 240 

2.6 Statistical analysis 241 

Differences in the GSI between treatment groups were examined with a Kruskal-242 

Wallis’s test.  A repeated measures two-way ANOVA (time, treatment) followed by Tukey’s 243 

test was used to compare the levels of sex steroids in the plasma of fish treated with sdrFsh in 244 

the “Dose-response” experiment, and in fish treated with or without sdrFsh/Lh (treatment, 245 

time) in the “Stimulation of gametogenesis” experiment.  Differences in sperm quality 246 

parameters were not analyzed due to the limited number of samples from the Control group 247 

(n=1).  Results are presented as mean values ± standard error of the mean (SEM), unless 248 

mentioned otherwise.  In all the statistical tests performed, p-values ≤ 0.05 were considered 249 

statistically significant.  Statistical analyses and graphics were run using GraphPad Prism 250 

9.4.1 for Mac OS, GraphPad Software, San Diego, California USA, www.graphpad.com. 251 

 252 

3. Results 253 

3.1  Dose response of sdrFsh  254 

In the off-reproduction season experiment, males exhibited a dose-dependent response 255 

in GSI% and plasma steroid levels when treated with sdrFsh (Fig. 2).  Significantly increased 256 

http://www.graphpad.com/


 11 

GSI values (Fig. 2A), and plasma levels of T and 11-KT were evident in fish to which 10 257 

(n=4) and 15 (n=4) µg kg-1 of sdrFsh was administered, compared to saline-treated Control 258 

fish (Fig. 2B and C).  In the Control group (n=6), the testes were dominated by 259 

spermatogonia, and spermatocytes represented a negligible fraction of the gonadal content 260 

(Fig. 3A).  A more advanced stage of germ cell development was observed in the testes of 261 

males from the sdrFsh5 group (n=4), compared to the Control group; other than 262 

spermatogonia, also spermatocytes, spermatids and a small fraction of spermatozoa were 263 

observed (Fig. 3B).  The administration of 10 and 15 µg kg-1 of sdrFsh stimulated the 264 

proliferation and differentiation of germ cells.  Sperm was found within the testes, and 265 

histology confirmed the presence of cysts in all spermatogenic stages and spermatozoa in the 266 

seminiferous tubules (Fig. 3C and D). 267 

Contrary to the males, no differences were found in GSI% of females between groups 268 

(Control, n = 6; sdrFsh5-10-15, n = 8) (Fig. 2D).  Ovarian lamellae were filled with oogonia, 269 

and primary oocytes were found in females from all groups (Fig. 4A-D).  On week 3, 270 

significantly increased plasma levels of T were detected in females treated with 10 µg kg-1 of 271 

sdrFsh, while on week 6 increased plasma T was found for females treated either with 10 or 272 

15 µg kg-1 of sdrFsh (Fig. 2E).  No differences were detected in the plasma levels of E2 of 273 

any of the sdrFsh-treated fish during the whole experiment (Fig. 2F). 274 

 275 

3.3 Stimulation of gametogenesis using sdrFsh/Lh treatment 276 

At the end of the 12th week experiment during the reproductive season of greater 277 

amberjack in the Mediterranean Sea, histology revealed the presence of almost exclusively 278 

spermatogonia in the testes of most Control fish (Fig. 5A), with sparse presence of 279 

spermatocytes at different stages of development.  On the other hand, it was possible to 280 

collect sperm upon abdominal pressure application in 100% of sdrFsh/Lh-treated males 281 
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(n=8)(Fig. 5B), therefore the fish were not killed for histological evaluation.  Only a single 282 

male (33%) of the Control males matured precociously and produced collectible sperm.  All 283 

the analyzed sperm quality parameters (spermatozoa concentration, percentage motile 284 

spermatozoa and spermatozoa velocity) were found to be similar in all fish, although it was 285 

not possible to compare sperm quality statistically between the sdrFsh/Lh and Control 286 

groups, since sperm could be collected from only one Control male (Fig. 6 A-C).  The small 287 

number of Control males compared to the sdrFsh/Lh in the experiment was coincidental and 288 

due to the unavoidable use of unsexed pre-pubertal 1+-year old fish for the experiment. 289 

Contrary to males, the combined administration of sdrFsh/Lh for twelve weeks, did not 290 

stimulate vitellogenesis, and no differences were found between females from the sdrFsh/Lh 291 

(n=7) and the Control group (n=7) in ovarian development (Fig. 5C and D).  The collected 292 

biopsies had primary oocytes <150 μm in diameter (data not shown). 293 

Significant changes in the sex steroid profile of males were found, as the administration 294 

of sdrFsh/Lh induced an increase in the plasma levels of T, 11-KT and 17,20β-P (Fig. 7).  295 

Both T and 11-KT increased gradually during the time of the experiment, reaching their 296 

highest levels on week 12.  On the other hand, plasma 17,20β-P in fish from the sdrFsh/Lh 297 

group increased significantly only at week 9.  In females, in general there were no significant 298 

differences in plasma sex steroid hormone levels during the experiment, apart from a small, 299 

yet significant, increase in plasma 17,20β-P during week 6 (Fig. 7).  300 

 301 

4. Discussion 302 

Using recombinant greater amberjack single-chain sdrFsh and Lh, we have recently 303 

enhanced gametogenesis, and induced maturation and spawning in adult, 5-year-old 304 

reproductively dysfunctional hatchery-produced greater amberjack held in tanks (Lancerotto 305 

et al., 2025).  In the present study, we tested the same recombinant hormones in stimulating 306 
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gametogenesis in pre-pubertal fish and demonstrated that it is possible to advance puberty in 307 

males, but not females, and have 100% spermiating fish when they are 2 years old.  In 308 

agreement with other studies conducted on immature male teleosts (Hayakawa et al., 2009; 309 

Penaranda et al., 2018; Zupa et al., 2023), the administration of sdrFsh alone was sufficient 310 

for stimulating steroidogenic activity, testicular growth and spermatogenesis in a dose-311 

dependent manner.  In 18-month-old males of the congeneric yellowtail kingfish, treatment 312 

with recombinant yellowtail kingfish Fsh (rytkFsh) also induced steroidogenesis in vitro, and 313 

induction of gametogenesis in males was achieved (Sanchis-Benlloch et al., 2017).  314 

Surprisingly, there was no significant increase in GSI after six weekly treatments of rytkFsh, 315 

while in the present study males treated with 10 and 15 μg kg-1 sdrFsh had 12 and 14-fold 316 

higher GSI values, respectively, compared to the males from the Control group.  In the 317 

European seabass, it has been demonstrated that different expression systems used to produce 318 

rFsh and rLh could result in differences in the stability and half-life of the hormones, making 319 

them best suited either for in vitro or in vivo applications (Moles et al., 2011).  Therefore, this 320 

discrepancy in results between greater amberjack and yellowtail kingfish that were similarly 321 

treated with recombinant hormones might be due to the different expression systems used to 322 

produce the specific rGths.  323 

The stimulation of spermatogenesis described in the dose-response experiment was 324 

conducted during the non-reproductive season for this species.  In teleost fishes living in 325 

temperate waters, such as the greater amberjack (Corriero et al., 2021a), day length variations 326 

constitute the fundamental cue for the activation of the Brain-Pituitary-Gonad (BPG) axis 327 

(Migaud et al., 2010).  Also, studies conducted on Seriola spp. suggested that photoperiod is 328 

the main environmental cue stimulating and driving reproductive development (Mushiake et 329 

al., 1994; Nyuji et al., 2018), if temperature is maintained above the minimum values 330 

appropriate for fish undergoing gametogenesis (Mushiake et al., 1998).  Although these 331 
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studies were focused on females, it is reasonable to consider that both sexes would respond in 332 

the same way to photoperiodic cues.  Overcoming this environmental cue, differentiation of 333 

germ cells in pre-pubertal male yellowtail kingfish was attained during the non-breeding 334 

season when both photoperiod and temperature were suboptimal for reproductive 335 

development, after peripheral administration of kisspeptins, in particular kiss2 (Nocillado et 336 

al., 2013), which was shown also in European seabass to control the secretion of Fsh and Lh 337 

(Espigares et al., 2015).  Therefore, it is reasonable to assume that 16-month-old males have 338 

the ability to respond to sdrFsh, even if exposed to non-optimal light conditions since the 339 

water temperature was maintained constant at values that are typically found in the 340 

Mediterranean Sea during spring when gametogenesis takes place (Fakriadis and Mylonas, 341 

2021; Mandich et al., 2004).  Under these conducive conditions, fish not only responded 342 

quickly to the sdrFsh treatment, but they reached an advanced-stage of gametogenesis, and 343 

spermatozoa were plentiful in the testicular lumen.  While the first experiment was conducted 344 

only to verify the responsiveness of pre-pubertal fish to the sdrGths, such a response to the 345 

sdrFsh during the non-breeding season might imply that this approach could be further 346 

implemented to control the reproductive cycle of greater amberjack, reducing the reliance on 347 

the seasonal variations of environmental cues, in order to stimulate reproductive development 348 

“off-season” in this species, in situations that photoperiod could not be controlled, such as 349 

when large breeders are reared in sea cages or outdoor tanks.  350 

By administering both sdrFsh and sdrLh to pre-pubertal, 20-month-old male greater 351 

amberjack during the natural reproductive period (March–June), we induced full sexual 352 

maturation in 100% of treated males when the fish were 2 years old.  The first age of male 353 

maturity has been reported between the third (Harris et al., 2007; Lancerotto et al., 2024) and 354 

fourth year of life (Marino et al., 1995).  Obviously, this approach for the induction of 355 

precocious puberty in males 1-2 years earlier is preferable than relying on the natural 356 
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occurrence, which, nevertheless, is possible yet very limited for commercial purposes 357 

(Lancerotto et al., 2024; Marino et al., 1995).  It is especially worth mentioning also, that 358 

fluent milt could be obtained via abdominal pressure from all sdrFsh/Lh-treated males, 359 

contrary to what was observed in 16-month-old fish treated only with sdrFsh in the present 360 

study, but also in other studies with adult greater amberjack.  Under captive conditions, 361 

collecting fluent milt through abdominal pressure in this species is rare (Fakriadis and 362 

Mylonas, 2021; Mylonas et al., 2004), partly because of the thick abdominal musculature of 363 

the species, but also because males exhibit reduced gonadal development and smaller 364 

seminiferous lobules (Zupa et al., 2017a).  Moreover, inconsistent and low sperm output 365 

(Fakriadis and Mylonas, 2021), associated to lower plasma levels of 11-KT and 17,20β-P 366 

(Zupa et al., 2017b) have also been reported.  In other species, such as meagre and 367 

Senegalese sole, rGths have proven effective in promoting steroidogenesis, gonadal 368 

development, and enlarging seminiferous and efferent duct tubules (Chauvigné et al., 2022; 369 

Zupa et al., 2023).  However, when looking carefully in meagre treated only with rFsh, 370 

spermiation was not attained (Zupa et al., 2023).  This is not surprising, considering the key 371 

role of the other Gth, namely Lh, in stimulating steroidogenesis and sperm hydration, and its 372 

involvement in the conversion of spermatids to spermatozoa (Schulz et al., 2010).  373 

Nevertheless, in adult breeders, although fertilized eggs could be obtained during spawning, 374 

milt could not be collected by stripping, even after receiving injections of both sdrFsh and 375 

sdrLh (Lancerotto et al., 2025).  The reason for this difference between the latter and the 376 

present work likely resides in the different protocol of administration of sdrLh, which in the 377 

present study it started already on week 1 of the combined sdrFsh/Lh treatment, well before 378 

the expected period of spermiation.  In fact, adult male breeders received only one sdrLh 379 

injection before they were allowed to spawn with induced females, which was deemed 380 

insufficient in this species to stimulate hydration (Lancerotto et al., 2025).  While we could 381 
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not perform histology to avoid killing the fish in the present study, altogether, the present 382 

results suggest that the early and combined administration of sdrFsh/Lh, was critical to 383 

achieving full maturation and the release of fluent milt, with gentle abdominal pressure, for 384 

the first time in our experiments (Fakriadis and Mylonas, 2021; Fakriadis et al. 2020b).  385 

The fact that the administration of sdrFsh/Lh allowed 100% of the treated males to 386 

release milt, as opposed to solely one spermiating male in the Control group, was per se an 387 

indication of the efficacy of the given therapy in inducing successful spermatogenesis and 388 

spermiation.  Based on the available literature on milt quality of adult greater amberjack 389 

(Fakriadis and Mylonas, 2021; Fakriadis et al. 2020b) and the very limited data from a 390 

precociously matured male here, sdrFsh/Lh-treated males produced sperm of comparable or 391 

better characteristics.  For example, the spermatozoa concentration in the current study was 392 

2-fold higher than in 3-year-old, but was comparable to that of 4- and 5-year-old F1 hatchery-393 

produced males reared in sea cages (Lancerotto et al., 2024) and higher than that of both 394 

captive-reared wild fish (Fakriadis and Mylonas, 2021) and F1 males from the Atlantic 395 

Ocean (Jerez et al., 2018).  As regards spermatozoa motility (motile, progressive and rapidly 396 

moving spermatozoa percentage) and spermatozoa velocity characteristics (VCL, VSL and 397 

VAP), the sperm of the sdrFsh/Lh-treated males were comparable to those of F1 hatchery-398 

produced adult males reared in sea cages (Lancerotto et al., 2024) and higher than those of 399 

wild-caught, captive-reared adult males evaluated before spawning induction (Fakriadis and 400 

Mylonas, 2021).  Therefore, our results suggest that the sdrFsh/Lh treatment was 401 

physiologically sound and conferred the ability to produce functional sperm to pre-pubertal 402 

males when they were 2 years old. 403 

Describing further the effect of sdrFsh/Lh treatment in pre-pubertal greater amberjack 404 

males, an elevation of plasma androgens was achieved a few weeks after treatment, as 405 

reported in other species (Chauvigné et al., 2012; Kamei et al., 2003).  The administration of 406 
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sdrFsh alone increased plasma androgen levels in a dose-dependent manner, outside the 407 

reproductive season and was sufficient to stimulate steroidogenesis here, confirming the 408 

central role of Fsh during gametogenesis in teleosts (Kamei et al., 2006; Levavi-Sivan et al., 409 

2010; Schulz et al., 2010).  Further, with the additional administration of sdrLh, the plasma 410 

levels of T and 11-KT increased strongly over time reaching values >5-fold higher than those 411 

treated only with sdrFsh, and the hormone levels were comparable to those of mature adult 412 

wild fish (Zupa et al., 2017b).  Moreover, although in terms of absolute mean values the 413 

difference between sdrFsh/Lh-treated and Control fish was < 0.15 ng ml-1, plasma levels of 414 

17,20β-P exhibited a marked increase and peaked after 9 weeks of treatment with sdrFsh/Lh.  415 

Members of the genus Seriola were categorized in a group of fish in which despite the 416 

existence of seasonal variations in plasma 17,20β-P, the absolute concentrations remain 417 

relatively low (Fakriadis et al., 2024; Poortenaar et al., 2001; Zupa et al., 2017b) compared to 418 

other teleosts (Scott et al., 2013; Scott et al., 2010).  Apparently, even a seemingly trivial 419 

increase in this sex steroid might exert a significant control on the BPG axis, as reported 420 

already for greater amberjack males during sex differentiation (Papadaki et al., 2021).  In 421 

many male teleosts, 17,20β-P is the maturation-inducing steroid (Scott et al., 2010), and its 422 

rise is associated with testicular hydration and the increase in the amount of releasable milt 423 

(Schulz et al., 2010); 17,20β-P was also found to up-regulate the gene encoding for 11β-424 

HSD, a key enzyme controlling the testicular production of 11-KT (Ozaki et al., 2006), which 425 

is known for being the main spermatogenesis-inducing steroid (Schulz et al., 2010).  426 

Considering the temporal profile of plasma sex steroid in pre-pubertal greater amberjack 427 

males, with the increased 17,20β-P on week 9 followed by a strong elevation of 11-KT 428 

concentration on week 12, the results obtained were congruent with the ability of the treated 429 

males to release milt upon the application of abdominal pressure, further confirming the 430 
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effectiveness of the given treatment in driving fish through maturation 1-2 years before 431 

natural puberty. 432 

Contrary to the males, pre-pubertal greater amberjack females <2 years-old showed 433 

complete refractoriness to sdrFsh/Lh, and we did not observe either somatic growth of the 434 

ovary (i.e. increase in GSI) or vitellogenic development of the oocytes.  Similarly, rFsh given 435 

to 18-month-old female yellowtail kingfish also failed to stimulate the initiation of 436 

vitellogenesis (Sanchis-Benlloch et al., 2017).  In other fishes, a single injection of rFsh in 437 

Manchurian trout (Brachymystax lenok) was reported to increase GSI in immature females, 438 

and vitellogenic oocytes could be identified three days after administration (Ko et al., 2007).   439 

The lack of response that we observed might be attributed to the longer time required 440 

for greater amberjack females to reach the first age of maturity compared to males (Kozul et 441 

al., 2001; Lancerotto et al., 2024; Marino et al., 1995; Micale et al., 1999) and the 442 

consequential inability of the gonad to perceive the hormonal stimulus (Fontaine et al., 2020; 443 

Okuzawa et al., 2002), as acquisition of competence by the different components of the BPG 444 

axis occurs only near the natural age of puberty (Kumakura et al., 2003).  Two indirect 445 

indications seem to support this hypothesis.  The first is the occurrence in greater amberjack 446 

of incomplete annual gametogenic cycles, interrupted abruptly by the insurgence of extensive 447 

follicular atresia before reaching maturity (Lancerotto et al., 2024; Micale et al., 1999), which 448 

is recognized as an indicator of incomplete competence of the BPG axis (Corriero et al., 449 

2021b), and has been termed as a "dummy run" in other species (Holland et al., 1998).  The 450 

second evidence is provided by 5-year-old mature greater amberjack females treated with 451 

sdrFsh/Lh, in which the completion of vitellogenesis, oocyte maturation, ovulation and 452 

spawning was obtained in conditions that usually prevent reproductive function (Lancerotto 453 

et al., 2025).  Although vitellogenesis is dependent on the interaction between Gths and their 454 

receptors in the ovaries, the latter might have a more significant control over this process, as 455 
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recently demonstrated in Pacific bluefin tuna (Thunnus orientalis) (Higuchi et al., 2024).  In 456 

fact, while the deletion of the gene for the Fsh- subunit delayed but did not arrest follicular 457 

growth (Zhang et al., 2015b), the deletion of the gene encoding the Fsh-receptor (fshr) in 458 

zebrafish (Danio rerio) (Zhang et al., 2015a) and medaka (Oryzias latipes) (Kitano et al., 459 

2022) prevented ovarian development in both species, probably due to the strong 460 

constitutional nature of its expression during follicular development (Kwok et al., 2005).  461 

Also in greater amberjack, results from a study on the seasonal variation of Gths and their 462 

receptors revealed that an increased fshr expression in the ovary could be more relevant for 463 

supporting vitellogenesis than the elevation of Fsh (Nyuji et al., 2016).  Moreover, in the 464 

gonads of immature Atlantic salmon (Salmo salar), expression of fshr was almost 3-fold 465 

lower in the females (Andersson et al., 2009), which could explain why in the present study 466 

males responded to sdrFsh/Lh, while females did not.  It is plausible that physiologically low 467 

expression -if not a lack- of fshr in the ovary of pre-pubertal female greater amberjack could 468 

explain their failure to respond to the combined sdrFsh/Lh treatment in our study.   469 

As expected from the lack of stimulation of oogenesis, plasma levels of sex steroids did 470 

not show a great increase in response to sdrFsh/Lh.  Very small increases were observed in T 471 

and E2 levels in the sdrFsh dose-response experiment, and a small and transient elevation of 472 

17,20β-P occurred on week 6 of our combined sdrFsh/Lh stimulation experiment.  473 

Testosterone levels increase in mature female teleosts during vitellogenesis, T is converted to 474 

E2 through the activity of the aromatase enzyme in the follicular cells, and released E2 acts at 475 

the hepatic level to promote the production of vitellogenin, which is then sequestered from 476 

the bloodstream into the developing oocytes (Levavi-Sivan et al., 2010; Sullivan and Yilmaz, 477 

2018).  The lack of stimulation of ovarian steroidogenesis in the present study may further 478 

support the conclusion that pre-pubertal female greater amberjack during their 2nd year of life 479 
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were not competent yet to respond to the sdrFsh/Lh treatment, possibly due to absence of the 480 

fshr in the ovary. 481 

In conclusion, this study demonstrated the ability of a combined treatment of sdrFsh/Lh 482 

to stimulate spermatogenesis in pre-pubertal greater amberjack males, resulting in the 483 

production of strippable, high quality sperm, 1-2 years before the expected age of first 484 

reproductive maturation.  Therefore, such treatment may be used commercially to advance 485 

puberty and reduce generation time in breeding selection programs.  On the contrary, 486 

sdrFsh/Lh was ineffective in pre-pubertal females and further work is needed to investigate 487 

the reason for this failure and the possibility of advancing puberty in older juvenile greater 488 

amberjack (e.g. 3-4 years old) that would be closer to their natural age of reproductive 489 

maturation.  490 

491 
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Figure Legends 492 
 493 
Fig. 1 Schematic representation of the sdrFsh/Lh experiment for the induction of 494 

gametogenesis, using 20-month-old, pre-pubertal greater amberjack.  Fish were given the 495 

sdrFsh/Lh treatment every 7 days for a total of 12 injections ( ).  Fish were bled every three 496 

weeks to evaluate the plasma levels of sex steroids ( ).  The reproductive stage of the fish 497 

was evaluated on week 12, seven days after receiving the last injection ( ). 498 

 499 

Fig. 2 Mean (  SEM) gonadosomatic index (GSI, %) of 16- month-old, pre-pubertal male 500 

(Saline-Control, n = 6; sdrFsh5-10-15, n = 4)  and female (Saline-Control, n = 6; sdrFsh5-10-501 

15, n = 8) greater amberjack sacrificed at the end of the 6-week sdrFsh dose-response 502 

experiment (A and D). Mean (± SEM) plasma levels of testosterone (Τ), 11-ketotestosterone 503 

(11- ΚΤ) and 17β-estradiol (E2) of pre-pubertal greater amberjack males (B and C), and 504 

females (E and F) at weeks 3 and 6 after sdrFsh treatment.  Letter superscripts indicate 505 

significant differences in GSI among treatment groups (Kruskal-Wallis’s test, P ≤ 0.05), and 506 

among treatments in sex steroid hormone levels (two-way, Repeated Measures ANOVA, 507 

Tukey HSD, P ≤ 0.05)  508 

 509 

Fig. 3 Microphotographs of histological sections from testes of 16-month-old, pre-pubertal 510 

greater amberjack males at the end of the sdrFsh dose-response experiment on week 6 (Fig. 511 

2).  A. Testicular section of a male from the Control group.  Spermatogonia (so) are the main 512 

cell population in the testes.  B. Testis in early spermatogenesis from the sdrFsh5 group.  513 

Different germ cells stages, i.e. so, spermatocytes (sc), spermatids (sd) and spermatozoa are 514 

found in the testicular tubules.  C and D. Advanced spermatogenesis in males from the 515 

sdrFsh10 and sdrFsh15 groups, with luminal spermatozoa (sz) and active spermatocysts in 516 

the germinal epithelium.  Black scale bar = 100 μm. 517 
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 518 

Fig. 4 Microphotographs of histological sections from ovaries of 16-month-old, pre-pubertal- 519 

greater amberjack females at the end of the sdrFsh dose-response experiment on week 6 (Fig. 520 

2).  Primary oocytes (po) constituted the main cell population of the ovary in the females of 521 

all groups.  A. Control group.  B. sdrFsh5.  C. sdrFsh10.  D. sdrFsh15 group.  Black scale bar 522 

= 100 μm. 523 

 524 

Fig. 5 A. Microphotograph of histological sections from testes of 20-month-old, pre-pubertal 525 

greater amberjack males from the Control group on week 12, at the end of the experiment on 526 

the use of sdrFsh/Lh to induce gametogenesis. Spermatogonia (so) are the only cell 527 

population in the testes.  B. Sperm release upon abdominal pressure from a male of the 528 

sdrFsh/Lh group on week 12.  C and D. Microphotographs of histological sections from 529 

greater amberjack females from the Control and sdrFsh/Lh groups, respectively, on week 12.  530 

Primary oocytes (po) constituted the main cell population of the ovary in all females.  The 531 

black scale bars indicate 100 (A) and 200 (C,D) μm 532 

 533 

Fig. 6 Mean (± SEM) spermatozoa concentration (×109 ml-1) (A), percentage (%) of motile, 534 

progressive, and rapid cells and straightness (STR), (B) Curvilinear (VCL, μm sec-1), straight 535 

line (VSL, μm sec-1) and average path velocity (VAP, μm sec-1)(C) of sperm samples 536 

collected from greater amberjack males, 12 weeks after treatment with sdrFsh/Lh (n = 8 out 537 

of 8) or saline (Control, n = 1 out of 3) in the experiment to induce gametogenesis in 20-mo-538 

old pre-pubertal fish. The sampling was done at the onset of the expected spawning season 539 

(June), at which time the fish were 24-mo-old.  Statistical evaluation of sperm quality 540 
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parameters -obtained with computer assisted sperm analysis (CASA)- between treatments 541 

was not done, due to the limited number of sperm samples from the Control group (n=1). 542 

 543 

Fig. 7 Mean ( SEM) plasma levels of testosterone (Τ), 11-ketotestosterone (11- ΚΤ), 17β-544 

estradiol (E2) and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) of 20-month-old, pre-545 

pubertal greater amberjack males (Control, n = 3; sdrFsh/Lh, n = 8) (A, C, E and G) and 546 

females ( Control, n = 7; sdrFsh/Lh , n = 7) (B, D, F and H) treated with weekly injections of 547 

sdrFsh/Lh for 12 weeks.  Letter superscripts indicate significant differences among sampling 548 

times within treatment group (two-way, Repeated Measures ANOVA, Tukey HSD, P ≤ 0.05).  549 

Asterisks indicate significant differences between treatments within sampling time (two-way 550 

ANOVA, Tukey HSD, P ≤ 0.05)  551 

552 
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