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A B S T R A C T

Lernanthropus kroyeri constitutes the most commonly encountered parasitic copepod for European seabass 
(Dicentrarchus labrax). Infection of gills with copepods directly impacts fish survival and growth performance 
with further economic implications for the aquaculture industry. Earlier studies identified moderate heritability 
of parasite count and two suggestive candidate QTL that explained 2 % of the total phenotypic variance each. The 
present study focuses on the two previously identified QTL loci to validate any QTL effect on L. kroyeri parasite 
resistance. In order to facilitate the validation of healthy and infected fish, individuals were selected based on 
their resistance to parasites, specifically the presence or absence of L. kroyeri in fish reared in a standard open sea 
cage. A subset of samples was genotyped using the 30 k MedFISH SNP array and the putative QTL effects were 
tested for parasite resistance by fitting an animal model in ASREML-R while the AIC criterion was used to assess 
model fit. The p-values for the two SNP with highest association to parasite resistance AX-373127007 and AX- 
373218583 were 0.041 (<0.05) and 0.085 (<0.1), respectively. Despite the moderate significance of the sec-
ond SNP, the lowest AIC score was detected after using both SNPs as fixed effects in the animal model. The 
findings of the present study, using a different population, validate the important role of the detected QTL loci on 
parasite resistance, highlighting a possible application of a low-cost Marker Assisted Selection (MAS) breeding 
program in farmed European seabass populations.

1. Introduction

Copepods are the second largest Crustacean taxa (after Malacos-
traca) with approximately 12,000 described copepod species (Huys and 
and, Boxshall, 1991, Humes, 1994, Raisuddin et al., 2007). Lernan-
thropus kroyeri is a parasitic copepod, encountered primarily on the gills 
of sea bass (Dicentrarchus) species (Vagianou et al., 2006; Eissa et al., 
2020; Bahri et al., 2002). Parasite infection results primarily in anemia, 
pale gills, gill lamellar necrosis, and hypoxia while at the same time, the 

host becomes susceptible to secondary bacterial infections (Abdallah 
and Hamouda, 2023; Eissa et al., 2020; Tokşen et al., 2010). Ultimately, 
infection of the host’s gills with copepods has a negative impact on fish 
survival with increased mortality rates resulting in large economic losses 
for the aquaculture industry (Antonelli et al., 2012).

The L. kroyeri infection rate shows seasonal patterns with the most 
significant differences observed between the winter (cold) and summer 
(hot) months. In particular, L. kroyeri infestation rates increase during 
spring and/or summer compared to winter (Abdallah and Hamouda, 
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2023; Antonelli et al., 2012; Eissa et al., 2020) with trends indicating 
that seasonal fluctuations in L. kroyeri infestation rates are likely influ-
enced by water temperature fluctuations (Antonelli et al., 2012). 
Another hypothesis suggests that the water temperature influences the 
immune response of the fish itself via an increase in the stress response 
of the host during higher water temperatures (Antonelli et al., 2012; 
Oikonomou et al., 2022a). From that perspective, the seasonal fluctua-
tion of L. kroyeri infestation rates could be explained by a drop in the 
immunodeficiency of the fish during the spring and summer periods 
(Antonelli et al., 2012). In addition to seasonality, the high stocking 
density of farmed fish in rearing cages provides a favorable environment 
for parasite infection (Antonelli et al., 2012).

Although infestation by L. kroyeri has been reported in European 
seabass in Egypt, Greece, Corsica, Croatia, North Adriatic, and Turkey 
(Abdallah and Hamouda, 2023; Antonelli et al., 2012; Čolak et al., 2021; 
Eissa et al., 2020; Manera and Dezfuli, 2003; Papapetrou et al., 2021; 
Tokşen et al., 2010), only a single Greek population has so far been 
studied to estimate the heritability and genetic constituent of L. kroyeri 
(Papapetrou et al., 2021; Oikonomou et al., 2022b). Papapetrou et al. 
(2021) studied the genetic heritability of parasite count in 1576 Euro-
pean seabass fish reared in an aquaculture facility in Sagiada (a 

cohabitation experiment in W. Greece with high infestation rates), 
showing a moderate heritability of the trait (0.28 ± 0.03), and a mod-
erate positive genetic correlation between parasite count and body 
weight of the host (0.34 ± 0.05). These findings prompted a study on 
European seabass resistance to L. kroyeri to further explore the genetic 
architecture and its correlation with growth and body weight using a 
commercial SNP array. A GWAS analysis using L. kroyeri parasite count 
revealed two putative QTL in LG7 which explained approximately 2 % of 
the phenotypic variance each (Oikonomou et al., 2022b). Furthermore, 
a high genomic heritability was estimated (0.75 ± 0.04) for parasite 
count and a moderate genomic correlation with body weight (0.24 ±
0.1) using a selected subset of the Sagiada population (Oikonomou et al., 
2022b). However, the two QTL are currently considered only as puta-
tive, due to their small effect on the parasite count of this cohabitation 
experiment and further analysis is required in order to validate the effect 
of the two candidate QTL regions.

The present study uses a second population from a different Greek 
fish stock farm site to validate the significance of the two putative QTL 
effects on parasite resistance and assess their potential utilization on a 
genomic/MAS breeding program.

2. Materials and methods

2.1. Genotyped population and studied trait

European seabass samples were collected from a common sea cage in 
Astakos, Greece, during a natural infestation outbreak with Lernan-
thropus kroyeri. The fish used in this experiment originated from the 
AVRAMAR company’s breeding program. At 580 days post-hatching 
(dph), fish average weight was 415.76 g (SD = 78.37 g). During this 
weighing, all fish were monitored for infestation from L. kroyeri (pres-
ence/absence of parasites on the gills). Fin-clips were collected from 222 
fish that had at least one parasite attached on them, and 110 parasite- 
free fish from the same site in Astakos, Greece (June 2022). Collected 

Fig. 1. Principal component analysis for the two studied populations. The dark blue color illustrates the population in Oikonomou et al. (2022b), and light blue dots 
depict the fish analyzed in the present study. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Table 1 
Descriptive statistics of the statistically significant SNP.

SNPs AX-373127007 AX-373218583

Genotype CC CT TT CC CT TT
Status Infected fish with L. kroyeri 9 107 106 91 93 38

Healthy 13 44 53 51 49 10
Total number of fish 22 151 159 142 142 48

Physical Position (bp) 30 k MedFish 
Array

1,594,919 27,519,962

Linkage Group 7
p-value 0.041 0.085
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samples were genotyped using the 30 K MedFISH array (Peñaloza et al., 
2021). Then, a PCA analysis was performed in R between the two 
studied populations, i.e., the one included in the present study from 
Astakos and the former one from Sagiada which was used for the GWAS 
analysis in Oikonomou et al. (2022b). Fig. 1 illustrates the PCA plot 
using the first two principal components per population, revealing no 
clustering between the population now studied and the former popula-
tion in Oikonomou et al. (2022b). The absence of genetic differentiation 
between these populations provides a solid foundation for testing the 
QTL across both groups, and for possible future utilization of MAS.

2.2. Statistical analysis

In order to evaluate the significance of the QTL, the following animal 

model was used in ASReml-R v4.2 (Butler et al., 2023, R Core Team, 
2021)

y = μ + Хb + Z u + e (Model 1) 

where the y is the vector of the status (healthy or infected fish with 
the L. kroyeri), the X is the incidence matrix related to the fixed effects, 
and b is the vector of the fixed effects of SNP genotypes (including the 
genotype of the best SNP AX-373127007, based on -log(p-value), with 3 
levels (CC, CT, TT), and the genotype of the second SNP AX-373218583 
with 3 levels (CC, TC, TT), respectively). Z is the incidence matrix 
related to the random effect, and u is the additive genetic effect using the 
Genomic Relationship Matrix (GRM) estimated using the 30 K MedFISH 
array, and it is illustrated as ~ N(0, Gσα

2), where the G is the GRM and σa
2 

is the polygenic additive variance arising from the GRM and the e is the 
residual. The proportion of phenotypic variance (PVE) explained by a 
given SNP was estimated as described in Oikonomou et al., (2022 a and 
b), using the following formula

where MAF is the Minor Allele Frequency of the SNP, b is the effect 
size estimated, and N is the sample size.

Fig. 2. Number of fish per SNP (AX-373127007, and AX-373218583) and SNP genotype (CC, CT and TT) based on their status (healthy or infested).

PVE =
(
2 b2 MAF (1 − MAF)

)/[
2 b2 MAF (1 − MAF)+ (se (b) )2 2 N MAF (1 − MAF)

]
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To assess the effect of the two SNPs on the genetic selection model, 
the Akaike Information Criterion (AIC) was used to select the most 
appropriate model based on the goodness-of-fit. In order to do that, two 
separate reduced models were fitted in ASReml-R v4.2 (Butler et al., 
2023, R Core Team, 2021); in the first model, no SNP was included 
(Model 2) while in the second model, the AX-373218583 SNP was 
removed (Model 3). In both reduced models, the additive polygenic 

variance was also fitted using the GRM. Each of the fitted reduced 
models was compared against Model 1.

2.3. Linkage disequilibrium

In addition to statistical significance, the presence of Linkage 
disequilibrium (LD) between the two studied SNP was investigated using 
plink1.9 (Purcell et al., 2007). To estimate LD, the r2 metric was used, 
which is the square of the correlation coefficient between two loci (Wall 
and Pritchard, 2003).

2.4. Alignment to the European sea bass reference genome and 
identification of gene candidates

The physical position of the two SNP with highest association to L. 
kroyeri resistance was examined to identify potential overlap between 
the SNP and functional elements in the European seabass genome. In 

Fig. 3. The frequency of the fish status (infested versus healthy) per genotype for a) AX-373127007, and b) AX-373218583.

Table 2 
Akaike Information Criterion (AIC) per model.

Model AIC

Model 1 − 156.30

Reduced models
Removing the AX-373218583 and AX.373127007 

(Model 2)
− 166.05

Removing the AX-373218583 (Model 3) − 162.10

Table 3 
Probe sequence information of the two best SNP for L. kroyeri parasite count using the older and most recent versions of the European seabass genome reference (dicLab 
v1.0c and dlabrax2021, respectively). E-value and percentage of sequence identity represent the accuracy metrics for sequence match between the two genome 
reference versions whereas the overlap between each probe and functional elements is indicated on the last column, based on the latest version of the European seabass 
functional annotation (dlabrax2021, Ensembl release 105).

SNP SNP probe position (dicLab v1.0c) SNP probe position (dlabrax2021) E-value Sequence identity (%) Functional overlap (dlabrax2021)

AX- 
373127007

LG7:1594904–1,594,934 CAJNNU010000021: 2455556–2,455,586 2.28e- 
09

100.000 capn9 (ENSDLAG00005018075)

AX- 
373218583

LG7:27519947–27,519,977 CAJNNU010000021: 33266525–33,266,555 2.28e- 
09

100.000 cacna1Ib (ENSDLAG00005003623)
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order to improve the genomic resolution and accuracy of the functional 
scan, the latest versions of the reference genome and transcriptome for 
European seabass were used, featuring a chromosome-level genome 
assembly with improved contiguity and an additionally improved gene 
annotation (dlabrax2021, accession number GCA_905237075.1). For 
this purpose, the physical position of each SNP was retrieved from the 
MedFISH SNP-array (Peñaloza et al., 2021), which was designed based 
on the first European seabass reference genome (dicLab v1.0c, accession 
GCA_000689215.1) (Tine et al., 2014). For each of the two SNPs, a lift- 
over mapping approach was performed: the nucleotide sequence of the 
SNP itself together with 15 base pairs (bp) upstream and downstream 
from the polymorphism was extracted from the earlier version of the 
European seabass reference genome (dicLab v1.0c, accession 
GCA_000689215.1) using the software bedtools (Quinlan and Hall, 
2010). A BLASTn search (Zhang et al., 2000) was then performed using 
the extracted 31 bp sequences for the two SNP probes as well as their 
respective reverse-complements (Table 4) against the latest version of 
the genome reference for European seabass (dlabrax2021, accession 
GCA_905237075.1). The best match of the two SNP probe sequences was 
finally identified on the latest genome reference based on statistical 
significance (e-value) and percentage of sequence identity metrics 
whereas the overlap of each SNP probe with genes was investigated 
using the publicly available gene annotation for European seabass in 
Ensembl (dlabrax2021, release 105).

3. Results and discussion

It was previously reported (Oikonomou et al., 2022b) that the dif-
ference between the genotype TT and CC for the AX-373127007 was 
6.09 parasites, and for the AX-373218583 it was 11.9 parasites. Those 
findings indicate that genotypes CC in both SNP are associated with 
lower numbers of parasites in the European seabass. The number of fish 
per genotype per SNP is illustrated based on their status (healthy/ 
infested) in Table 1 and Fig. 2, and their frequency in Fig. 3. Examining 
Model 1 in ASReml-R v4.2 (Butler et al., 2023, R Core Team, 2021), the 
p-values for AX-373127007 and AX_373218583 were 0.041 (<0.05) and 
0.085 (<0.1), respectively. Thus, the AX-373127007 SNP was statisti-
cally significant for parasite resistance and can therefore be considered 
as a QTL locus associated with resistance to L. kroyeri. On the other 
hand, the AX-373218583 SNP was only significant at a 10 % level of 
significance and could therefore continue to be considered as a putative 
QTL and not a false positive detection given the results by Oikonomou 
et al. (2022b). Furthermore, any future SNP saturation of the genomic 
region may reveal haplotype blocks suitable for MAS. Nevertheless, in 
order to detect the most efficient prediction model for parasite resis-
tance, both the reduced and Model 1 were examined using the AIC 
metric. Under the AIC criterion, lower scores indicate a better fit and 
consequently a better parasite resistance prediction. Model 1 had the 
lowest AIC which means that this model showed the highest goodness- 
of-fit compared to the reduced models irrespective of the borderline 
significance of AX-373218583. Table 2 illustrates the AIC per model, 
showing the superiority of Model 1. Furthermore, in the present study, 
the PVE was estimated to be 13.3 % for AX-373127007 and 4 % for AX- 
373218583.

Furthermore, LD testing between the two SNP showed an r2 value of 
0.079, indicating that the two SNP are not in linkage disequilibrium, and 
therefore not co-inherited. This could likely explain the independent 
effect of each SNP on the phenotype along with the estimated p-value in 
Model 1. These results support any future inclusion of SNP AX- 
373218583 in a genetic evaluation model, also showing reduced sta-
tistical significance (P = 0.085) in the current analysis.

Looking at the physical position of the two polymorphisms on the 
latest version of the European seabass genome reference, both SNPs 
overlapped functional elements, namely the genes calpain-9 and calcium 
voltage-gated channel subunit alpha1 Ib (cacna1Іb) for SNPs for AX- 
373127007 and AX-373218583, respectively (Table 3 and 4). The two 
genes are related to Ca2+ influx with earlier studies suggesting the 
presence of a link between parasite attachment and upregulation of the 
Ca2+ signaling pathway (Bagnall et al., 2009). In addition, calpain genes 
are involved in immune response, working as a mediator of oxidative 
stress, a state likely explained during L. kroyeri infection (Hwang et al., 
2020). Furthermore, cacna1b controls neurotransmitter release from 
neurons and is directly involved in pain signaling (Uniprot). Despite the 
suggested roles of the two genes, little is known about their importance 
and involvement in response to parasite infestation; further studies are 
required in order to accurately address the role of these genes on L. 
kroyeri resistance as well as investigate whether the overlapping genes 
represent gene candidates or if the QTL SNPs are indicative of nearby 
causal variation that was omitted due to low SNP density in the Med-
FISH genotyping array.

Taken together, the present study’s findings indicate that both SNPs 
may be important in the prediction of the likelihood of L. kroyeri parasite 
resistance. The absence of sufficient SNP association significance trailing 
observed in Oikonomou et al. (2022b), could indicate that these SNPs 
could likely be spuriously associated. However, based on the present 
study, those SNPs could not be considered anymore as putative QTL loci 
or false positive results but rather as QTL loci most likely linked to the 
parasite resistance.

The identification of QTL linked to L. kroyeri parasite resistance is 
vital for the Greek as well as for the Mediterranean aquaculture industry. 
Until now, conventional pedigree-based selection approaches have been 
applied in European seabass breeding populations. Such approaches 
included resistance to L. kroyeri as a breeding goal by using sib or 
progeny testing in fish sampled from sites with high infestation rates 
(such as the Sagiada site) to evaluate healthy and infested broodstock 
candidates. However, such selection (sib or progeny testing) and 
recording (parasite count using a stereoscope) methods are costly both 
in terms of human labor as well as the speed of genetic gain (i.e., 
increased generation interval). Nevertheless, numerous studies have 
been conducted to date, demonstrating the superiority of fitting the 
genomic relationship matrix (GRM) over the traditional pedigree 
approach. Comparison of pedigree-based against GRM-based ap-
proaches in European seabass has thus far shown lower predicted ability 
or accuracy of prediction of breeding values for body weight, stress in-
dicators (Oikonomou et al., 2022a) and resistance to L. kroyeri 
(Oikonomou et al., 2022c). However, the utilization of a GRM from an 
SNP array can also increase rapidly the cost associated with genotyping. 
One way to reduce the cost of including such a breeding goal (i.e., 

Table 4 
Original and reverse-complement sequences for the two QTL SNP probes. The original location of SNPs was extracted from the MedFISH 
SNP array. In addition, 15 base pairs (bp) upstream and downstream of the SNP were extracted from the older version of the European 
seabass genome reference (dicLab v1.0c). Highlighted nucleotides in the probe sequence indicate the alleles for each SNP using the 
original and complement-reverse sequence.

SNP Sequence (dicLab v1.0c) Sequence probe

AX-373127007 Original sequence TTGGTATTTGTACTTGGACTTGGCCCCACGG
Reverse complement CCGTGGGGCCAAGTCCAAGTACAAATACCAA

AX-373218583
Original sequence CACCTGGTTCAGAGCGCCTATTATGGCCATC
Reverse complement GATGGCCATAATAGGCGCTCTGAACCAGGTG
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resistance to L. kroyeri) can be the use of a combination of Marker 
Assisted Selection (MAS) and the traditional pedigree approach. The 
identified QTL can be utilized via MAS in the industry, improving the 
selection accuracy of the candidates, and consequently offering higher 
resistance to fish infestation from L. kroyeri.
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