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Abstract

Since the mid-1980s, the Mediterranean Sea’s surface and deeper layers have warmed at
unprecedented rates, with recent projections identifying it as one of the regions most im-
pacted by rising global temperatures. Metrics that characterize phytoplankton abundance,
phenology and size structure are widely utilized as ecological indicators that enable a quan-
titative assessment of the status of marine ecosystems in response to environmental change.
Here, using an extensive, updated in situ pigment dataset collated from numerous past re-
search campaigns across the Mediterranean Sea, we re-parameterized an abundance-based
phytoplankton size class model that infers Chl-a concentration in three phytoplankton size
classes: pico- (<2 µm), nano- (2–20 µm) and micro-phytoplankton (>20 µm). Following
recent advancements made within this category of size class models, we also incorporated
information of sea surface temperature (SST) into the model parameterization. By tying
model parameters to SST, the performance of the re-parameterized model was improved
based on comparisons with concurrent, independent in situ measurements. Similarly,
the application of the model to remotely sensed ocean color observations revealed strong
agreement between satellite-derived estimates of phytoplankton size structure and in situ
observations, with a performance comparable to the current regional operational datasets
on size structure. The proposed conceptual regional model, parameterized with the most
extended in situ pigment dataset available to date for the area, serves as a suitable founda-
tion for long-term (1997–present) analyses on phytoplankton size structure and ecological
indicators (i.e., phenology), ultimately linking higher trophic level responses to a changing
Mediterranean Sea.
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1. Introduction
The Mediterranean Sea, often referred to as a “miniature ocean” [1], is arguably

one of the most unique marine ecosystems on Earth. As the largest semi-enclosed sea
(~2.5 million km2), the Mediterranean features a range of physical oceanographic pro-
cesses (mesoscale gyres, sites of deep-water formation and thermohaline circulation) that
shape its complex biophysical characteristics [2,3]. The basin’s nutrient regimes range
from oligotrophic to ultra-oligotrophic, with phosphorus being the predominant limiting
nutrient, particularly in the Eastern Mediterranean Sea [4–7]. Nevertheless, the basin
supports enhanced levels of phytoplankton biomass and primary production, particularly
in regions characterized by cyclonic gyres, strong winter vertical mixing, fronts, coastal
upwelling and inputs from anthropogenic sources [8–10]. Despite the general predom-
inance of oligotrophy in the basin, such mechanisms contribute to increased biological
productivity, which supports higher trophic levels and essential fisheries resources, as well
as the Mediterranean Sea’s status as a biodiversity hotspot [11–13].

Rising temperatures in Mediterranean surface and subsurface waters have been re-
ported since the 1980s, and warming trends (~0.03–0.048 ◦C/year depending on the ref-
erence period and area of the basin) have continued into the present decade [3,14–19].
Furthermore, model-based analyses of the projected responses of the Mediterranean hy-
droclimate and regional atmospheric circulation have shown that the broader region is
a hotspot for climate warming [20,21]. The reported impacts of increased temperatures
on Mediterranean marine ecosystems include alterations to plankton community com-
position, abundance and phenology [22–25], harmful algal blooms [26] and jellyfish out-
breaks [27]. Warmer conditions have also been linked with the entry of invasive tropical
species [16,28–30] and changes to the biomass, distribution, spawning and landings of
commercially important pelagic fish species [31–34]. A detailed review on the impacts of
warming and temperature extremes on Mediterranean Sea marine ecosystems and biota is
provided by Darmaraki et al. [35].

Ecological indicators based on the presence and distribution of phytoplankton, which
constitute the base of marine food webs and contribute to approximately half of the annual
global carbon fixation [36–38], can be used to quantify the health of marine ecosystems
and their response to environmental perturbations and climate warming [39–41]. Remotely
sensed observations of ocean color provide the only means from which long-term esti-
mates of phytoplankton can be acquired synoptically at a high spatial resolution (<1 km)
and sampling frequency (daily) [40]. A key ecological indicator for monitoring marine
ecosystem health is phytoplankton size structure, which has important ramifications for
biogeochemical cycling [42], the export of carbon to deeper layers [43–47] and marine food
web structure [48–51].

Until now, there have been several concerted efforts dedicated to the satellite-based
retrieval of size structure, and phytoplankton functional types (PFTs), in the Mediterranean
Sea. Navarro et al. [52,53] used an updated version of the PHYSAT method [54,55], a
spectral approach that analyzes normalized water-leaving radiances to reproduce and
investigate the dynamics of four phytoplankton functional groups. Sammartino et al. [56]
employed an abundance-based approach [57,58] to derive estimates of pico-, nano- and
micro-phytoplankton from SeaWiFS observations of total chlorophyll-a (Chl-a) concentra-
tion and investigated their spatiotemporal variability. The authors based their abundance-
based model re-parameterization on in situ pigment datasets acquired from two trans-
Mediterranean oceanographic cruises (Prosope99 and Boum08) and the BOUSSOLE moor-
ing situated in the Northwestern Mediterranean Sea. An alternative abundance-based
model was later developed by Di Cicco et al. [59], who applied a statistical approach to
the same in situ datasets to derive polynomial equations that describe the relationships
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between total Chl-a concentration and three phytoplankton size classes, estimated through
a regional Diagnostic Pigment Analysis/Approach (DPA). Their equations were subse-
quently applied to satellite-derived observations of the total Chl-a concentration to derive
regional products of the phytoplankton size classes (PSCs) available in the European Union
Copernicus Marine Service online catalog (https://doi.org/10.48670/moi-00299) [60,61].
Additional methods based on artificial intelligence clustering have also been utilized to
study the spatiotemporal distribution of phytoplankton functional types from remotely
sensed ocean color data [62].

Deriving phytoplankton size structure from satellite-derived observations of ocean
color is not a trivial task [63]. The quality of the initial estimates of phytoplankton biomass
(indexed by total Chl-a concentration [total Chl-a]) depends on several factors, including
the choice of ocean color algorithm used to retrieve Chl-a, the Case-1 assumption that
phytoplankton and other optically active substances (colored dissolved organic matter
and non-algal particles) covary in a predictable manner [64] and the potentially shifting
relationships between total Chl-a concentration and the physical environment, especially
within the context of climate change [65–67]. Among the various methods for deducing
PSCs from ocean color, abundance-based approaches relying on the observed relationships
between total phytoplankton biomass and cell size are amongst the most readily applicable
using principal observations of satellite-derived Chl-a concentration and have been shown
to perform similarly with spectral- and ecological-based approaches [51,58,68].

Once parameterized, abundance-based PSC models simply require inputs of satellite-
derived total Chl-a concentration, making them relatively simple to implement. These
models can perform well across a range of oceanic environments [56,58,69–83]. The derived
parameters of abundance-based models also offer meaningful and interpretable information
about the regional environment. Additionally, the more recent incorporation of physical
parameters, including sea surface temperature (SST) into abundance-based PSC models,
has provided the foundation for accounting for the effects of temperature, either directly
(metabolic responses) or indirectly (changes in nutrient availability through mixing) on
phytoplankton communities. This integration also supports the subsequent improvement of
ocean color models and their capacity to capture climate-driven changes in phytoplankton
size structure [66,67,70,71,79]. Despite recent advancements in abundance-based PSC
models and the incorporation of physical variables, there remains a need for updated,
region-specific frameworks for the Mediterranean Sea that integrate new in situ data
(especially in undersampled regions of the Eastern Mediterranean Sea) and refine the
accuracy of satellite-derived estimates of phytoplankton size structure.

Here, we aim to improve the estimation of phytoplankton size structure in the Mediter-
ranean Sea. Specifically, our objectives are to (1) utilize an updated in situ dataset of
phytoplankton pigment concentrations compiled from various sampling initiatives across
the Mediterranean Sea and to apply a DPA to retrieve in situ estimates of size-fractionated
Chl-a concentration in three size classes: pico-, nano- and micro-phytoplankton; (2) use
these in situ observations of phytoplankton size fractions to re-parameterize a conceptual,
three-component abundance-based PSC model [58,71]; (3) incorporate an SST-dependency
within the model framework that accounts for the impact of changes in the regional physical
environment on the model parameters, considering recent advances in ocean color model-
ing and PSC algorithms [67]; and (4) apply the re-parameterized model to satellite-derived
ocean color observations of Chl-a concentration and independently validate the remotely
sensed estimates of phytoplankton size structure. Model performance is assessed relative to
an SST-independent version of the model, as well as current operational datasets that have
been developed for the Mediterranean Sea (https://doi.org/10.48670/moi-00299) [60,61].

https://doi.org/10.48670/moi-00299
https://doi.org/10.48670/moi-00299
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Finally, we explore potential applications of the re-parameterized model and investigate
long-term trends in the fraction of PSCs over the last ~27 years.

2. Materials and Methods
2.1. Materials
2.1.1. High-Performance Liquid Chromatography (HPLC) Pigment Datasets

HPLC pigment samples, collated from several databases, were acquired across
the broader Mediterranean Sea. The SeaWiFS Bio-optical Archive and Storage System
(SeaBASS) [84] offers HPLC pigment in situ datasets for different Mediterranean sampling
campaigns, including the Prosope cruise (September–October 1999, https://campagnes.
flotteoceanographique.fr/campagnes/99040060/, accessed on 1 December 2024) [85], the
Boussole mooring (monthly sampling conducted between 2001 and 2006, as well as an
independent sampling effort in July 2008) [86] and the Boum08 cruise (July 2008) [87]. A
subset of pigment datasets was also acquired from the MAREDAT global database of HPLC
phytoplankton pigment data measurements (https://doi.pangaea.de/10.1594/PANGAEA.
793246, accessed on 1 December 2024) [88]. The MAREDAT dataset comprises a collation
of pigment data from different Mediterranean sampling campaigns, within the frame-
work of broader European Programs. These campaigns include the ALMOFRONT1 cruise
(Leg 2, May 1991, https://campagnes.flotteoceanographique.fr/campagnes/91004212/,
accessed on 1 December 2024) and ALMOFRONT2 cruise (Leg 2, December 1997–January
1998, https://campagnes.flotteoceanographique.fr/campagnes/97010132/, accessed on
1 December 2024) [89,90], the MTPII-MATER/MINOS cruise (May–June 1996) [91], the
METEOR 31/1 cruise (December 1994–February 1995) [92] and the DYFAMED cruises
(January 1991–December 2005) [93]. Datasets were also acquired from the Tara Oceans
(2009–2013) and Mediterranean (2014) expeditions (https://fondationtaraocean.org/en/
expedition/tara-oceans/, accessed on 1 December 2024). HPLC pigment measurements
collected during the BioArgoMed oceanographic cruise (13 May 2015–1 June 2015) were
also acquired from https://www.seanoe.org/data/00405/51678/ (accessed on 1 December
2024) [94].

In the Eastern Mediterranean Sea, the HPLC database maintained by the Hellenic
Centre for Marine Research (HCMR) [95] consisted of observations collected during nine
oceanographic cruises within the framework of European Union and national projects
(SESAME-IP (2008), PERSEUS-IP (2013), KRIPIS I (October 2014, May and December–2015),
LEVECO (2016) [96], JRC-SHIPSUPPORT I (2022) and the THALES-AegeanMarTech project
(October 2013 and March and July 2014) [97]), as well as two time-series datasets collected
from two monitoring stations of the POSEIDON system in the Cretan Sea; the E1-M3A
buoy (WMO 61277), located 24 nautical miles north of Heraklion in Crete island (~35.736◦N,
25.122◦E), operating since 2010, and the Heraklion Coastal Buoy (HCB) at Heraklion Bay,
Cretan Sea (35.425◦N–25.073◦), operating since 2016 [98,99].

Sampling stations often included multiple in situ measurements taken at various
depths. For this analysis, we used pigment samples from the upper 20 m of the water
column, which approximately corresponds to estimates of the first optical depth previously
reported in the Mediterranean Sea [2,100]. Further justification for the selection of the
upper 20 m is provided in Figure S1, which shows the ratio of total Chl-a in the surface
layer to measurements at deeper depth intervals. Within the upper 20 m, this ratio remains
relatively stable. However, at deeper intervals (>30 m), it becomes more variable, with
differences in the surface-to-depth ratio reaching up to an order of magnitude. HPLC
measurements were collated into a consolidated pigment dataset and subjected to the
following quality assurance procedures. First, following Aiken et al. [101], samples were
retained when (1) the difference between total Chl-a concentration and the sum of accessory

https://campagnes.flotteoceanographique.fr/campagnes/99040060/
https://campagnes.flotteoceanographique.fr/campagnes/99040060/
https://doi.pangaea.de/10.1594/PANGAEA.793246
https://doi.pangaea.de/10.1594/PANGAEA.793246
https://campagnes.flotteoceanographique.fr/campagnes/91004212/
https://campagnes.flotteoceanographique.fr/campagnes/97010132/
https://fondationtaraocean.org/en/expedition/tara-oceans/
https://fondationtaraocean.org/en/expedition/tara-oceans/
https://www.seanoe.org/data/00405/51678/
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pigments was <30% of the total pigment concentration and (2) the regression between
total Chl-a and the sum of accessory pigments exhibited a slope between 0.7 and 1.4 and
an r2 > 0.9. In addition, data points falling outside the 95% confidence interval of the
regression were excluded. After applying these quality assurance procedures, a total of
2234 measurements were included in the analysis.

2.1.2. Auxiliary Size-Fractionated Chlorophyll-a and Phytoplankton Cell
Abundance Datasets

The size-fractionated Chl-a dataset consists of in situ size-fractionated and fluorometri-
cally assessed Chl-a data, concurrently collected with most of the HPLC-assessed pigment
data in the database of HCMR. The size fractions employed were 0.2–2.0, 2.0–5.0 and
>5.0 µm. Further details for this dataset are provided in Psarra et al. [102]. Here, the 2.0–5.0
and >5.0 µm fractions were combined, representing nano- and micro-phytoplankton. We
note that Chl-a measurements within the picophytoplankton size class (0.2–2 µm) were
excluded when values were ≤0.01 mg m−3 due to limitations in fluorometric detection at
such low concentrations. Moreover, to obtain an estimation of the observed size ranges of
the dinoflagellates in the Mediterranean Sea, a time-series dataset of larger nano- and mi-
croplankton cells (approximately >7 µm cell size) collected at the E1-M3A station, spanning
12 years (2010–2022), was also analyzed. Phytoplankton species identification and counting
were performed with inverted microscopy on 100 mL water subsamples preserved in
alkaline Lugol’s solution (final concentration 2%) [103].

Finally, to perform a preliminary assessment of the pigment composition per size
fraction, a small-scale sampling scheme was designed. Briefly, sub-surface (~2 m) coastal
seawater was collected from the north coast of Crete in front of HCMR facilities on 28
May 2022. The Cretan Sea is considered an oligotrophic area [104], and several mesocosm
and microcosm experiments simulating oligotrophic conditions have been performed
with water from this site [105–107]. Duplicate 1.5–2 L seawater samples were filtered
sequentially through 5, 2 and 0.2 µm pore size polycarbonate filters, and HPLC pigment
determination per size fraction was performed following the extraction and pigment
quantification procedures used in HCMR’s HPLC database [97]. To assess whether the
use of polycarbonate filters versus GF/F filters had any effect on the obtained results of
the size-fractionated HPLC dataset, two additional samples were taken: (1) a 2 L sample
filtered through a 25 mm GF/F filter commonly employed in standard HPLC pigment
analysis and (2) a 1 L sample filtered through a 47 mm Ø 0.2 µm pore size polycarbonate
filter. A small percent difference of +0.39% in total Chl-a was observed between the GF/F
and polycarbonate filters. For all other pigments, the corresponding percentage differences
varied between −23% and +24%.

2.1.3. Satellite Ocean Color Data and Data Partitioning for Model Training and Validation

For the computation of satellite matchups, 20-m depth-averaged in situ pigment
samples were matched to satellite-derived estimates of total Chl-a concentration acquired
from the Copernicus Marine Service Mediterranean Bio-Geo-Chemical, Level 3, daily
Satellite Observations product (OCEANCOLOUR_MED_BGC_L3_MY_009_143) for the
period spanning September 1997–July 2024 (Figure 1). Level 3, daily, mapped data of
total Chl-a concentration, as well as current operational estimates of phytoplankton size
structure (see Section 3.4), were acquired at a spatial resolution of 1 km from https://
doi.org/10.48670/moi-00299 [59–61,108,109]. To increase the number of available satellite
matchups, each pigment sample was matched to a 3 × 3 box of pixels, centered on the closest
pixel to the in situ sampling station, based on the same day and nearest longitude and
latitude [110]. Following previous homogeneity criteria for satellite ocean color matchup
data, boxes containing less than 5 valid pixels and with a coefficient of variation > 0.15

https://doi.org/10.48670/moi-00299
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were discarded [110,111]. For boxes containing more than 5 valid pixels, the median of
the existing pixels was then computed. A total of 325 satellite matchups were retrieved
based on the depth-averaged HPLC pigment dataset (Figure S3). For the partitioning of the
HPLC in situ dataset (N = 2234) into subsets for model training and independent validation,
we designated all sampling stations without a corresponding satellite observation as the
training dataset (N = 1294). In situ samples that did have satellite matchups were set aside
for independent validation (N = 940). We note that HPLC measurements at all available
depths within the upper 20 m were incorporated in this partitioning.

 

Figure 1. Spatial map highlighting the locations of the in situ pigment sampling stations in the
Mediterranean Sea used for the model re-parameterization (blue triangles) and the corresponding
satellite ocean color matchups used for model validation (yellow circles).

2.1.4. Satellite-Derived Sea Surface Temperature Datasets

Level 4 daily observations of SST were acquired at a spatial resolution of 0.05◦ × 0.05◦

(~5.5 × 5.5 km) from the Mediterranean Sea–High Resolution L4 Sea Surface Temperature
Reprocessed Product, located in the Copernicus Marine Data Stores (https://data.marine.
copernicus.eu/product/SST_MED_SST_L4_REP_OBSERVATIONS_010_021/description,
https://doi.org/10.48670/moi-00173 [112], accessed on 1 February 2025). This repro-
cessed dataset, produced specifically for the Mediterranean Sea, provides a long-term,
continuous SST time series, consisting of nighttime, optimally interpolated satellite-derived
observations spanning from January 1982 to present day. SST matchups were acquired
by retrieving the closest satellite pixel to the in situ training sample based on the nearest
longitude and latitude for the same day. We note that this dataset has been validated with
an extensive in situ temperature dataset in a coastal region of the Mediterranean Sea (Sa-
ronikos Gulf, Aegean Sea). Comparisons between in situ data and the satellite-derived SST
product have revealed strong and highly significant correlations (r > 0.99, p < 0.00001) [10].
For the SST-dependent model applications involving remotely sensed total chlorophyll-a
(Chl-a) estimates and the computation of annual trends (Section 3.5), monthly SST fields
were interpolated (griddata function from the SciPy library in Python) to match the spatial
resolution of the ocean color dataset (OCEANCOLOUR_MED_BGC_L3_MY_009_143).

2.2. Methods
2.2.1. Diagnostic Pigment Approach

To compute phytoplankton size fractions from HPLC pigment datasets, we adopted
the method of Brewin et al. [70], modified from Claustre [113], Vidussi et al. [92], Uitz
et al. [114], Brewin et al. [58], Devred et al. [115] and Di Cicco et al. [59]. First, the total Chl-a

https://data.marine.copernicus.eu/product/SST_MED_SST_L4_REP_OBSERVATIONS_010_021/description
https://data.marine.copernicus.eu/product/SST_MED_SST_L4_REP_OBSERVATIONS_010_021/description
https://doi.org/10.48670/moi-00173
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concentration (C) was computed from the weighted sum of seven diagnostic phytoplankton
pigments (henceforth referred to as Cw), according to

Cw = ∑7
i=1 WiPi (1)

where W represents the weights, and P corresponds to the following seven diag-
nostic pigments, numbered sequentially as follows: (1) fucoxanthin, (2) peridinin,
(3) 19′-hexanoyloxyfucoxanthin, (4) 19′-butanoyloxyfucoxanthin, (5) alloxanthin, (6) to-
tal chlorophyll-b and (7) zeaxanthin. Following this, W was calculated by applying a
multi-linear least squares regression to the pigment samples. The statistical performance
regarding the relationship between Cw and the measured concentration of total Chl-a con-
centration (C), as well as a comparison of W values relative to the previous literature, are
presented in Figure S2 and Table S1, respectively.

Next, we computed the fraction of total Chl-a concentration within three PSCs: pico-,
nano- and micro-phytoplankton. Following Brewin et al. [58], and as applied by Di Cicco
et al. [59] to in situ pigment datasets mainly from the Western Mediterranean Sea, the
fraction of pico-phytoplankton (Fp, cell diameter < 2.0 µm) was computed by assigning
zeaxanthin, total chlorophyll-b and a portion of 19′-hexanoyloxyfucoxanthin to the pico-
phytoplankton assemblage at total Chl-a concentrations < 0.08 mg m−3:

Fp =


(−12.5C+1)W3P3

Cw
+ ∑7

i=6 Wi Pi
Cw

if C ≤ 0.08 mg m−3

∑7
i=6 Wi Pi

Cw
if C > 0.08 mg m−3

(2)

The fraction of the total Chl-a concentration of the nano-phytoplankton assemblage (Fn)
was determined by assigning 19-butanoyloxyfucoxanthin, alloxanthin and the remaining
portion of 19′-hexanoyloxyfucoxanthin following

Fn =


(12.5C)W3P3

Cw
+ ∑5

i=4 Wi Pi
Cw

if C ≤ 0.08 mg m−3

∑5
i=3 Wi Pi

Cw
if C > 0.08 mg m−3

(3)

Finally, the fraction of total Chl-a concentration to the micro-phytoplankton assem-
blage (Fm) was computed by assigning fucoxanthin and peridinin, following

Fm =
{

∑2
i=1 Wi Pi

Cw
(4)

After deriving the fractions of each phytoplankton assemblage to total Chl-a con-
centration (Fp, Fn and Fm), the size-specific Chl-a concentrations for each size class were
computed by multiplying each size fraction by the measured total Chl-a concentration
as follows:

Cp = FpC (5)

Cn = FnC (6)

and
Cm = FmC (7)

2.2.2. SST-Independent Three-Component Phytoplankton Size Class Model

We applied the three-component abundance-based model of Brewin et al. [58], which
estimates the fractional contribution of different PSCs as a continuous function of the
total Chl-a concentration (ranging from 0.006 to 5.512 mg m−3 in this study). Based on
previous research by Sathyendranath et al. [116], the empirical model assumes that the
dominance of small phytoplankton cells (picophytoplankton) occurs up to a specific total
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Chl-a concentration. Beyond this upper limit of total Chl-a, regulated by a combination of
bottom up (e.g., nutrient availability) and top down (e.g., grazing), the addition of extra
Chl-a into the marine ecosystem can be attributed to the growth of larger phytoplankton
cells (nano- and micro-phytoplankton) [42,51,117]. These relationships can be represented
mathematically using the two following exponential functions that relate the total Chl-a
concentration (C) to the fractional contribution of Chl-a in the picophytoplankton (Fp) and
combined pico-/nanophytoplankton (Fp,n) assemblages (Equations (8) and (9)):

Fp =
Cm

p

[
1 − exp

(
− Dp

Cm
p

C
)]

C
(8)

Fp,n =
Cm

p,n

[
1 − exp

(
−Dp,n

Cm
p,n

C
)]

C
(9)

In Equations (8) and (9), the model parameters Cm
p and Cm

p,n represent the asymp-
totic maximum Chl-a concentrations attainable by the picophytoplankton and combined
pico-/nanophytoplankton assemblages, whilst Dp and Dp,n characterize the fraction of
total Chl-a for each assemblage as total Chl-a tends to zero. The model parameters were
derived by fitting Equation (8) to Fp and C, and Equation (9) to Fp,n and C, which were
computed using the in situ HPLC dataset (see Section 2.2.1 and Equations (2)–(4)). To apply
the fits, we used a non-linear least squares fitting procedure (“leastsq: Levenberg-Marquardt”
method from the lmfit package in Python [version 1.2.2]). As size-fractionated Chl-a within
the modeled PSCs (Fp and Fp,n) cannot exceed the total Chl-a concentration, the parameters
Dp and Cm

p,n were constrained to be less than or equal to 1. The parameters Cm
p and Cm

p,n
were constrained to be less than or equal to 5.51 mg m−3. This upper bound was arbitrarily
chosen to reflect a realistic theoretical maximum concentration of total Chl-a in the study
region. To compute the uncertainties of the model parameters, we implemented a boot-
strapping procedure [118] by randomly sub-sampling the training dataset (1000 iterations)
and re-fitting Equations (8) and (9) to each sub-sample. The median and 95% confidence
intervals were then retrieved from the resultant parameter distribution. The computed
model parameters are presented in Table 1 and generally lie within the range of values
previously retrieved in other areas of the global oceans. The fractional contributions of
the nanophytoplankton and microphytoplankton assemblages were subsequently derived
as follows:

Fn = Fp,n − Fp (10)

Fm = 1 − Fp,n (11)

The corresponding Chl-a concentration associated with each size class can be derived
by multiplying Fp, Fn and Fm by the total Chl-a concentration.
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Table 1. Parameters of the SST-independent and SST-dependent models and comparisons with parameters computed in previous studies. The bracketed values
represented the 95% confidence intervals computed using bootstrapping (3000 iterations).

Model
SST-

Independent
Model

SST-Dependent
Model

Study This study [58] [119] [70] [71] [73] [67] This study [71] [67]

Region Mediterranean Sea Atlantic Ocean Indian Ocean Global North Atlantic
Ocean

Northeast Atlantic
Ocean Global Mediterranean Sea North Atlantic

Ocean Global

N 1294 1935 686 5841 2239 1100 30,579

Cp,n
m (mg m−3) 2.15

(1.71–2.63) 1.06 0.94 0.77 (0.72–0.84) 0.82 (0.76–0.88) 0.28 0.95 (0.927–0.968)

G1 −1.57
(−2.18–−1.45)

−1.51
(−1.57–−1.43)

−0.56
(−0.562–−0.549)

G2 −3.51
(−4.21–−2.45)

−1.25
(−1.41–−1.25)

−3.79
(−4.053–−3.549)

G3 12.83
(12.59–12.87)

14.95
(14.87–15.05) 1.92 (1.888–1.944)

G4 −0.14
(−0.16–−0.11) 0.25 (0.23–0.26) −0.14

(−0.142–−0.137)

Cp
m (mg m−3) 0.10

(0.09–0.12) 0.11 0.17 0.13 (0.12–0.14) 0.13 (0.12–0.13) 0.06 0.17 (0.167–0.174)

H1 0.24 (0.16–0.26) 0.29 (0.28–0.30) −0.28
(−0.279–−0.272)

H2 0.58 (0.47–0.77) 3.05 (2.87–3.26) 1.13 (1.070–1.187)

H3 12.00
(12.00–12.90)

16.24
(16.19–16.29) 5.03 (4.957–5.103)

H4 0.69 (0.68–0.75) 0.56 (0.55−0.57) 0.89 (0.892–0.898)

Dp,n
0.87

(0.86–0.88) 0.9 0.97 0.94 (0.93–0.95) 0.87 (0.86–0.89) 0.96 0.87 (0.868–0.878)

J1 0.048
(0.046–0.070) 0.37 (0.367–0.373) 0.39 (0.390–0.392)

J2 5.20
(−14.41–5.76) 1.13 (1.10–1.16) 0.33 (0.330–0.333)

J3 12.91
(12.89–17.99)

14.89
(14.87–14.91) 8.02 (8.000–8.047)

J4 0.853
(0.821–0.854)

0.569
(0.566–0.571) 0.55 (0.546–0.547)

Dp
0.60

(0.56–0.64) 0.73 0.82 0.80 (0.78–0.82) 0.73 (0.71–0.76) 0.99 0.67 (0.658–0.675)

O1 0.66 (0.52–1.10) 0.503
(0.501–0.505) 0.65 (0.647–0.650)

O2 0.35 (−2.30–0.49) 1.33 (1.31–1.37) 0.22 (0.222–0.224)

O3 12.00
(12.00–12.54)

17.31
(17.28–17.32)

12.79
(12.772–12.800)

O4 0.09 (0–0.52) 0.258
(0.256–0.259) 0.09 (0.085–0.087)
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2.2.3. SST-Dependent Three-Component Phytoplankton Size Class Model

Here, we examine how SST influences the relationship between total chlorophyll-a
concentration and phytoplankton size structure. Specifically, we relate the parameters of
the model to SST based on the framework proposed by Brewin et al. [71] and Sun et al. [67].
The training dataset was sorted according to increasing SST, and a running fit of the model
was performed using a range of bin sizes ranging from 550 to 950 samples at increments of
20. Equations (8) and (9) were applied to the data within each bin, which was incrementally
shifted by one sample from lower to higher temperatures. A bootstrap approach with
1000 iterations was used to estimate the model parameters for each running fit, with
the median of the bootstrap distribution taken as the final parameter value. The results,
including the variation in model parameters with rising temperatures across all bin sizes,
are presented in Figure 2. To represent the relationships between SST and the model
parameters, we applied the following logistic functions to the running model fits using a
non-linear least squares minimization approach (“leastsq: Levenberg-Marquardt” method
from the lmfit package in Python), following Brewin et al. [71] and Sun et al. [67]:

Cm
p,n = 1 −

{
Ga

1 + exp[−Gb(SST − Gc)]
+ Gd

}
(12)

Cm
p = 1 −

{
Ha

1 + exp[−Hb(SST − Hc)]
+ Hd

}
(13)

Dp,n =
Ja

1 + exp[−Jb(SST − Jc)]
+ Jd (14)

Dp =
Oa

1 + exp[−Ob(SST − Oc)]
+ Od (15)

Here, the model parameters Ga and Gd represent the upper and lower bounds of Cm
p,n,

Gb denotes the slope of the change in Cm
p,n with SST and Gc represents the mid-point of

the slope between Cm
p,n and SST. For the model parameters Cm

p , Dp,n and Dp, Hi, Ji and Oi

(i = a − d) are broadly equivalent to Gi in Equation (12). The values of the model parameters,
as well as their associated 95% confidence intervals, are presented in Table 1.

Overall, the relationships between the model parameters and SST are comparable
to what has been reported in other regions [67,71], including the adjacent oligotrophic
Red Sea [66], where Cm

p,n and Cm
p decrease with rising SSTs (Figure 2a,c), and Dp,n and Dp

increase. Using smaller bin sizes (e.g., <670 data points), there are insufficient data across
the full range of Chl-a to reliably retrieve model parameters. In these cases, the running
fit may include subsets of data lacking sufficient sample size or variability, often resulting
in the parameter Cm

p,n reaching its upper bound (~5.51 mg m−3) (Figure 2c). Conversely,
using larger bin sizes likely provides a bin of data points that is more representative of
the overall dataset, allowing the model to be better constrained and to more effectively
capture relationships in the dataset. To illustrate this more clearly, we present fits of the
three-component model for the retrieval of Cp,n, using smaller (550 samples) and larger
(910 samples) bin sizes. These fits are applied to the section of the sorted training dataset
where the model parameter Cm

p,n upper bound is reached, providing a comparative view
of how bin size influences the model’s behavior (Figure S4). Using a larger bin size, the
improved ability to retrieve the model parameter Cm

p,n is visually apparent, enabling a more
realistic estimation of size-specific Chl-a concentration for the pico-/nano-phytoplankton
size class (Figure S4).
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Figure 2. Relationships between the parameters of the three-component model and sea surface
temperature. (a,b) Variations in the model parameters Cm

p and Dp as a function of temperature. The
solid-colored lines represent the running fits of the model for different bin sizes (550–950 samples).
The corresponding dashed-colored lines represent the logistic functions used to characterize the
relationships between Cp

m and Dp and temperature (Equations (13) and (15)). Depending on the
bin size, some notable difference can be observed in the fitted models, particularly at smaller bin
sizes. The solid black lines highlight the result of the least squares minimization using a bin size of
910 samples. The gray solid and dotted lines represent the parameters of the SST-independent
model and their uncertainties, respectively (c,d), as shown in panels (a,b) but for Cm

p,n and Dp,n

(Equations (12) and (14)).

For the implementation of the temperature dependency, we subsequently chose a
larger bin size of 910 samples as this yielded improved statistical performance metrics
on the residuals of the fitted logistic model and produced optimal results in the in situ
validation (see Section 3.3).

2.2.4. Statistical Performance Metrics

For the assessment of satellite ocean color data and the in situ validation of the re-
parameterized PSC model, we used a suite of statistical performance metrics, including
the Pearson correlation coefficient (r), the Root Mean Square Error (Ψ), the Mean Absolute
Error (ε) and the systematic bias (δ). These metrics have been used previously in satellite
ocean color studies for the purpose of model validation [66,67,69–72,79,81] and comprise
key metrics prioritized by the European Space Agency Ocean Colour Climate Change



Remote Sens. 2025, 17, 2362 12 of 31

Initiative (ESA OC-CCI) project for the provision of per-pixel errors in satellite ocean color
datasets [111]. The statistical error metrics and bias were computed as follows:

r = ∑
(

Xi
E − XE

)(
Xi

M − XM
)

/√
[
∑

(
Xi

E − XE
)2

× ∑
(

Xi
M − XM

)2
]

(16)

ε =
∑N

i=1
∣∣XE

i − XM
i

∣∣
N

(17)

ψ =

[
1
N ∑N

i=1

(
XE

i − XM
i

)2
]1/2

(18)

δ =
1
N

[
∑N

i=1

(
XE

i − XM
i

)]
(19)

where X is the variable (e.g., Chl-a concentration or fraction), the superscripts E and M
represent estimated and measured variables, respectively, and N is the number of samples.
In Equation (16), XE and XM represent the mean of the expected and measured variables
respectively. Condorcet’s pairwise comparisons of residuals was performed as an additional
test of model performance [120–123] (see Supplementary Materials).

3. Results and Discussion
3.1. Three-Component Model Re-Parameterization

First, we fitted the re-parameterized SST-independent three-component PSC model to
the training dataset (solid black lines in Figure 3). Overall, the model effectively captures
the relationships between the total Chl-a concentration and the phytoplankton size fractions
(Fp, Fn, Fp,n and Fm) (Figure 3a–d). Fp is higher at low total Chl-a concentrations, whilst
Fn and Fm are greatest at intermediate and higher total Chl-a concentrations, respectively.
These relationships are consistent with other applications of this model framework in
other regions of the global oceans [58,69–72,74–76,79–81,124]. Fp dominates total phyto-
plankton biomass at Chl-a concentrations below ~0.1 mg m−3. Between ~0.1 mg m−3 and
~3 mg m−3, Fn contributes the largest fraction. At concentrations exceeding ~3 mg m−3,
Fm becomes the dominant size class. Whilst the upper boundary of total Chl-a associated
with Fp (~0.1 mg m−3) is close to that reported in previous studies (~0.2 mg m−3) [58,73],
the increase in microphytoplankton occurs at substantially higher total Chl-a concentra-
tions, likely reflecting the general dominance of pico- and nanophytoplankton across a
broader range of total Chl-a concentrations in the oligotrophic waters of the Mediterranean
Sea [8,53,56,59,92,125–129]. The dominance of microphytoplankton at substantially higher
Chl-a concentrations is likely linked to ephemeral events that substantially enhance nu-
trient availability, such as intense vertical winter mixing, upwelling, fronts, deep water
formation, aeolian inputs from atmospheric deposition and anthropogenic inputs from
coastal areas [8,56,125,126,130], which may enable the proliferation of larger phytoplankton
groups such as diatoms.

The three-component model also successfully captures the relationship between
total Chl-a concentration and size-specific Chl-a concentrations (Cp, Cn, Cp,n and Cm)
(Figure 3e–h). Following the assumptions of the conceptual three-component size class
model, the static asymptotic maximum Chl-a concentrations theoretically attained by
the picophytoplankton (Cp

m) and combined pico/nano-phytoplankton (Cp,n
m) assem-

blages (Equations (8) and (9)) can be visualized by the plateaus of the fitted models in
Figure 3e,g. These asymptotic maximum values increase with phytoplankton size, where
Cp

m = 0.10 mg m−3 and Cp,n
m = 2.15 mg m−3 (Table 1). The model underestimates Fp and

overestimates Fn at lower total Chl-a concentrations (Figure 3a,b). This can also be observed
when the model is fitted to the size-specific Chl-a concentrations (Cp and Cn) (Figure 3e,f).



Remote Sens. 2025, 17, 2362 13 of 31

This may be attributed to the influence of temperature on the relationships between total
Chl-a concentration and phytoplankton size, where higher SSTs are associated with in-
creased Fp and decreased Fn and Fm. The apparent temperature-dependency of the model
parameters aligns with previous applications of the three-component model [67,71,79].
We also acknowledge that the initial assignment of pigments in the diagnostic pigment
analysis (DPA) used to generate the training dataset could influence model performance
as certain pigments—such as 19′-hexanoyloxyfucoxanthin—are shared by both pico- and
nanophytoplankton groups. Consequently, the under- or over-representation of these
groups in the model output may reflect biases introduced by pigment assignment. We refer
the reader to Section 3.6 for further discussion on the modification of the DPA.

 

Figure 3. (a–d) Fits of the re-parameterized three-component model to the HPLC training dataset. The
fraction of total Chl-a, partitioned into the phytoplankton size classes (Fp, Fn, Fp,n and Fm), plotted as
a function of total Chl-a concentration. The in situ data points have been plotted according to their
corresponding sea surface temperature. The black solid line represents the fit of the three-component
phytoplankton size class model (e–h). The corresponding size-specific Chl-a concentrations (Cp, Cn,
Cp,n and Cm), plotted as a function of total Chl-a concentration.

3.2. Incorporation of Temperature Dependency into the Three-Component Model

To investigate the impacts of temperature on the relationships between phytoplank-
ton size structure and total phytoplankton biomass, we modified the abundance-based
model following the approach of Brewin et al. [71] and Sun et al. [67] and incorporated
a temperature-dependency within the conceptual model framework (see Section 2.2.3 in
Materials and Methods). The resultant, simulated relationships between phytoplankton
size fractions and size-specific Chl-a concentrations, incorporating the SST-dependent
reparameterization, are presented in Figure 4. SST clearly influences the derived model
fits for all PSCs; under warmer conditions, Fp increases at lower total Chl-a concentrations,
while these conditions are associated with reductions in Fn and Fm at similarly low total
Chl-a levels (Figure 4a–d). Conversely, colder temperatures are generally linked with a
higher contribution of Fn and Fm, although some lower values of Fm do occur at higher
Chl-a concentrations (>1 mg m−3), relative to Fp,n. Whilst these relationships are generally
consistent across the full range of Chl-a concentrations, some exceptions do occur. For
example, at intermediate total Chl-a concentrations (~0.3–1 mg m−3), the contribution of
Fp under warmer conditions decreases, coinciding with an increased contribution of Fn

(Figure 4b). When considering Fm, the temperature-dependency effect is less apparent,



Remote Sens. 2025, 17, 2362 14 of 31

with relatively minor differences occurring in the estimated fraction across the full range of
total Chl-a concentration (Figure 4d).

Figure 4. Influence of SST on three-component model re-parameterization. (a–d) Simulations of the
fraction of total Chl-a, partitioned into the independent phytoplankton size classes (Fp, Fn, Fp,n and
Fm), plotted as a function of total Chl-a concentration for varying SSTs. (e–h) As shown in panels
(a–d) but for the corresponding size-specific Chl-a concentrations (Cp, Cn, Cp,n and Cm).

Overall, these relationships are consistent with previous studies [66,71,83,124] and
may reflect the established linkages between phytoplankton size structure and the regional
physical conditions. For example, the contribution of picophytoplankton to total biomass
has been shown to be higher during warmer conditions in the oligotrophic waters of the
Mediterranean Sea [22,131–135], reflecting the improved ability of smaller phytoplankton
cells to flourish in more stratified, nutrient-depleted conditions [42,136–140]. Conversely,
colder temperatures often indicate enhanced nutrient availability due to water column
vertical mixing and deep convection events, which tend to favor blooms of larger phyto-
plankton cells [62,102,124,125,130,138,141]. In the Mediterranean Sea, bloom events may
consist of both nanophytoplankton (e.g., nanoeukaryotes, nanoflagellates and nanoplank-
tonic diatoms) [53,130,142] and microphytoplankton (diatoms) [56,59,102,143], potentially
explaining why, under colder temperatures, Fn remains higher than Fm as total Chl-a
increases to intermediate concentrations (up to 1 mg m−3) (Figure 4d). Elevated concen-
trations of microphytoplankton have also been reported in Mediterranean coastal regions
due to enhanced nutrient input from terrestrial sources [53,56,59,144], indicating potential
exceptions to these relationships. Size-fractionated Chl-a concentrations, modeled as a func-
tion of SST (Figure 4e–h), exhibit similar relationships, with higher Cp values co-occurring
with warmer temperatures up to intermediate concentrations of total Chl-a, beyond which
Cn increases (Figure 4e,f).

3.3. Independent Model Validation

The independent model validation in situ dataset (N = 940, see Section 2.1.3) was
used to compare the performance of the re-parameterized SST-independent model and
SST-dependent models (Figure 5). Overall, the SST-independent model performs well for
the retrieval of size-fractionated Chl-a concentrations (Cp, Cn, Cp,n and Cm), with statistical
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performance metrics ranging as follows: r = 0.76–0.99, Ψ = 0.05–0.26, ε = 0.04–0.21 and
δ = −0.01–0.11 (Figure 5a–d).

Figure 5. Independent PSC model validation between in situ and modeled size-fractionated Chl-a
concentrations in the Mediterranean Sea. (a–d) Comparison of in situ size-fractionated Chl-a con-
centrations (Cp, Cn, Cp,n and Cm) with modeled values using the SST-independent three-component
model. The dashed purple lines represent the asymptotic maximum values of Chl-a concentration
within each size class (see Equations (8) and (9)). The 1:1 line is shown as the solid black line.
(e–h) As shown in panels (a–d) but incorporating the SST-dependency described in Section 2.2.3.
Note that the difference in the number of observations between the nano- (N = 939) and micro-
phytoplankton (N = 866) size classes is due to the dominance of picophytoplankton or the combined
presence of pico- and nano-phytoplankton in those samples.

The SST-dependent model is not constrained by static asymptotic maximum values
(Cp

m and Cp,n
m, red dashed lines in Figure 5a–c) and performs equally well, or better,

than the SST-independent model (Figure 5e–h). Specifically, there is an improvement
in the correlation coefficient and error metrics of Cp (r = 0.78, Ψ = 0.17, ε = 0.14 verses
r = 0.76, Ψ = 0.18 and ε = 0.14), particularly within the higher range of concentrations. The
SST-dependent model performance for Cn and Cm is similar to that of the SST-independent
model (Figure 5f,h). The improvement of Cp from the SST-dependent model is consistent
with prior studies [67,71,79,83,145], reflecting its improved ability to capture Cp at higher
concentrations. This may be attributed to the ability of the SST-dependent model to better
capture the ecological relationships between size structure and total Chl-a, which may
become more complex at higher concentrations. For example, the SST-model dependency
potentially allows a better differentiation between intermediate or higher Chl-a regimes
driven by vertical mixing of colder, nutrient-rich waters (favoring larger cells) and higher
Chl-a regimes that occur in warmer, stratified conditions (favoring pico-phytoplankton).
We also compared in situ and modeled estimates of size-fractionated Chl-a concentra-
tions based on the full training dataset used to re-parameterize the model (N = 1294,
Figure S5). The results of this comparison are consistent with the independent model
validation presented in Figure 5; there is a substantially improved statistical performance
for the retrieval of Cp, especially at higher concentrations, whilst the model performance
for Cn, Cp,n and Cm remains similar or slightly improved (Figure S5).
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3.4. Satellite Validation

Based on the reasonable performance of the conceptual three-component model
when validated against an independent in situ dataset (Figure 5), we applied this model,
along with its SST-dependent counterpart, to satellite-derived matchups of Chl-a con-
centration. We then compared the results with corresponding in situ size-fractionated
Chl-a concentrations (Figure 6). In addition, we compared the performance of the two
re-parameterized three-component models presented here (SST-independent and SST-
dependent) with the current operational Mediterranean dataset, which provides daily
satellite-derived estimates of phytoplankton size structure from the Copernicus Marine
Datastore (OCEANCOLOUR_MED_BGC_L3_NRT_009_141, Italian National Research
Council, https://doi.org/10.48670/moi-00299 [59–61]) (Figure 6a–d) across the Mediter-
ranean Sea. Performing the validation of the three aforementioned models based on the
satellite derived Chl-a concentration is deemed appropriate considering the significant,
positive correlation between HPLC-derived measurements of total Chl-a concentration and
the satellite matchups reported here (r = 0.83, Ψ = 0.25, ε = 0.21 and δ = −0.14, Figure S3),
as well as the recent total Chl-a matchup analysis presented in Collela et al. [61].

To ensure complete independence of the satellite validation and maintain compara-
bility among the different PSC models, we excluded all in situ datasets that were used
during the development of the operational Copernicus product (Di Cicco et al. [59]), leaving
172 available satellite matchup data points. Generally, across the three different models,
satellite-derived estimates of size-fractionated Chl-a concentration agree well with the
independent in situ validation dataset (Figure 6). The SST-independent model (Figure 6e–h)
performs similarly or slightly poorer than the current Copernicus operational product
(Figure 6a–d). The main improvement of the SST-independent model can be observed
in the error metrics for the retrieval of Cn (Figure 6f), with slight improvements in Ψ, ε

and δ. When considering the SST-dependent model (Figure 6i–l), some improvements
occur when compared to the Copernicus operational product and the SST-independent
model. The correlation coefficient between in situ and satellite-derived estimates of Cp

is improved (r = 0.71), coinciding with comparable model errors (Ψ = 0.19, and ε = 0.14),
although δ from the Copernicus operational product remains lower (δ = −0.01) in compari-
son to the SST-dependent model (δ = −0.04). Additional improvements can be observed
for the retrieval of satellite-derived estimates of Cn and Cm, which also exhibit compa-
rable correlation coefficients and reductions in their respective model errors and biases
(Figure 6j,l). The performance of the three models can be further visualized and compared
in Figure S6, which also incorporates the results of the Condorcet’s pairwise comparisons
of the residuals test. Whilst the model errors are comparable, Cp and Cp,n derived from the
Copernicus operational product demonstrate a higher percentage of wins and improved
bias compared to both the SST-independent and SST-dependent models. In contrast, Cn

and Cm show comparable or higher win percentages, alongside the general improvement
in error metrics, for the SST-independent and SST-dependent models. Collectively, these
results demonstrate that both empirical [59–61] and conceptual [58,67,71] approaches are
valid for deriving satellite-derived observations of phytoplankton size structure in the
Mediterranean Sea.

Both conceptual and empirical PSC models are abundance-based methods that infer
phytoplankton size structure as a continuous function of total Chl-a concentration. When
well trained, empirical approaches are not constrained by an underlying conceptual frame-
work and often have a strong predictive power, are easy to implement and can be applied
across broad temporal and spatial scales. On the other hand, conceptual models, whilst less
flexible and potentially less predictive, offer ecologically meaningful model parameters
and may be better suited for applications related to climate change [65]. Considering the

https://doi.org/10.48670/moi-00299
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potential of the conceptual SST-dependent approach presented here, both in accounting
for the effects of regional warming (SST) and in its applicability beyond the current ocean
color record [67], we adopt this approach in the following section.

Figure 6. Model validation between in situ and satellite-derived size-fractionated Chl-a concen-
trations in the Mediterranean Sea. (a–d) Comparison of in situ size-fractionated Chl-a concentra-
tions (Cp, Cn, Cp,n and Cm) with satellite-derived values acquired from the regional Mediterranean
ocean color dataset of the European Union Copernicus Marine Service online catalogue (OCEAN-
COLOUR_MED_BGC_L3_NRT_009_141 [59–61]). The 1:1 line is shown as the solid black line.
(e–h) As shown in (a–d) but with satellite-derived estimates of PSCs from the SST-independent three-
component model. (i–l) As shown in panels (e–h) but incorporating the SST-dependency explained
in Section 2.2.3.
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3.5. Application of the Re-Parameterized Model to Satellite Ocean Color Data

To investigate whether long-term changes in phytoplankton size structure have oc-
curred over the last three decades, we applied the validated, SST-dependent PSC model
to remotely sensed estimates of total Chl-a concentration and computed annual trends
for each phytoplankton size fraction spanning the period September 1997–July 2024
(Figure 7). The fraction of picophytoplankton (smaller cells) has increased across the
majority of the Mediterranean Sea (Figure 7a), coinciding with a concurrent decrease in
the nano-and micro-phytoplankton size fractions (Figure 7b,c). These relationships are
statistically significant across the majority of the Eastern Mediterranean Sea, as well as
parts of the Western Mediterranean, such as the Balearic and Tyrrhenian Seas. An excep-
tion is micro-phytoplankton, which exhibits significant trends primarily in the Eastern
Mediterranean. These spatial trends are consistent with previous in situ studies that have
reported shifts in community structure towards small-sized phytoplankton in numerous
sub-regions of the Mediterranean Sea. For instance, the earlier study of Marty et al. [125]
revealed an increasing trend in picophytoplankton over a 9-year period (1991–1999) due
to a prolonged summer stratification period in the Ligurian Sea (Western Mediterranean,
~43.8◦N, 8.8◦E), based on in situ observations from the DYFAMED time-series station. In
the northern Adriatic Sea (the Gulf of Trieste, ~45.7◦N, 13.6◦E), Mozetič et al. [146] observed
a regime shift in 2002/2003, characterized by a decline in phytoplankton biomass and a
switch to the predominance of a smaller phytoplankton size fraction (nanoflagellates).
Ramirez-Romero et al. [139] reported a marked increase in small-sized phytoplankton in
the Gulf of Tunis (~37.0◦N, 10.5◦E), driven by the combined effects of rising temperatures
and increased anthropogenic nutrient input. Maugendre et al. [147] also reported a shift
towards cyanobacteria under experimental warming in samples collected from the Bay of
Villefranche (Northwest Mediterranean, ~43.7◦N, 7.3◦E).

At synoptic spatial scales, El Hourany et al. [22] used satellite-derived datasets to
investigate the interannual variability of Mediterranean bioregions and their associated
phytoplankton functional types and found an increasing prevalence of cyanobacteria,
potentially linked with the ongoing warming trend observed in the basin. Similarly,
the recent occurrence of Marine Heatwaves (MHWs) in the Mediterranean Sea has been
associated with a shift in phytoplankton community structure to smaller cells [148,149].
These effects reflect broader, global patterns of shifts to smaller phytoplankton communities
that flourish better in warmer, more stratified environments [137,150,151]. Aside from
these general trends, interesting patterns can be observed within some of the notable
mesoscale features of the Mediterranean. The Rhodes Gyre, a cyclonic eddy located in
the Eastern Mediterranean (~30◦E, 35◦N), and often regarded as an “oasis” of biological
productivity, exhibits a stronger trend of increasing picophytoplankton relative to the
surrounding waters. In contrast, the adjacent anticyclonic Ierapetra Gyre, located just
east of Crete, exhibits minimal trends. Whilst the trend in microphytoplankton is less
pronounced, regions of increasing microphytoplankton contributions are evident in the
North Adriatic and North Aegean Seas, as well as within the Lions Gyre (~5◦E, 42◦N).
The reparameterized SST-dependent model framework presented here provides a suitable
foundation for further satellite-based investigations into trends and long-term interannual
variability in phytoplankton size structure, as well as their potential links to regional
physical and climatic drivers.
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Figure 7. Annual trends in phytoplankton size fractions. Per-pixel trends, computed using linear
regression analyses, for the picophytoplankton (Fp) (a), nanophytoplankton (Fn) (b) and microphyto-
plankton (Fm) (c) size fractions over the Mediterranean Sea. Size fractions were derived using the
re-parameterized SST-dependent abundance-based phytoplankton size class model. We note that Fp,
Fn and Fm represent the fractional contributions of the pico-, nano- and microplankton size classes
to total chlorophyll-a (Chl-a) and are, therefore, dimensionless. The gray cross-hatching represents
regions where p-values were statistically significant (p < 0.05).

3.6. Re-Evaluating In Situ Estimates of Phytoplankton Size Structure from Diagnostic
Pigment Approaches

We utilized an extensive Mediterranean HPLC pigment dataset, acquired from various
research cruise campaigns, to derive in situ estimates of phytoplankton size fractions that
were used for the re-parameterization of the SST-independent and SST-dependent PSC
models. Specifically, we followed the diagnostic pigment approach of Brewin et al. [58],
which apportions some of 19′-hexanoyloxyfucoxanthin to picophytoplankton at low Chl-a
concentrations, as this pigment can also be found in some pico-eukaryotes [152]. This
approach has also been adopted in previous studies that have derived phytoplankton size
fractions from HPLC pigment data [56,59]. Alternative datasets of phytoplankton size
structure (e.g., acquired via size-fractionated filtration (SFF), flow cytometry or microscopy)
are required to independently validate this diagnostic pigment approach and ascertain
whether further adjustments are needed to account for the potential diversification of other
pigments across different size classes. For example, a comparison between size-fractionated
filtration (SFF) and HPLC (DPA)-derived size fractions in the Atlantic Ocean has revealed
significant biases between the two methods [153], with HPLC-based DPA overestimating
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nanophytoplankton chlorophyll and underestimating picophytoplankton chlorophyll when
compared with SFF, even when 19′-hexanoyloxyfucoxanthin is apportioned to picophy-
toplankton at very low Chl-a concentrations. However, it should be acknowledged that
the SFF method also has inherent uncertainties, with potential inaccuracies arising from
filter pore size, clogging, phytoplankton cell breakage and the possibility that SFF may
overestimate picoplankton contributions due to the increased cellular content of Chl-a per
unit biomass of picophytoplankton cells [97,128,153]. Furthermore, observed differences
between coincident datasets of phytoplankton size structure may not necessarily be sys-
tematic but potentially associated with the nature of the datasets themselves. In other
words, differences may be regionally dependent, related to the considered depth range of
the collected samples and/or dataset specific. For example, in Brewin et al. [71], the biases
found using a different dataset (acquired from surface waters in the North Atlantic) were
notably smaller, suggesting a reasonable agreement between the two methods.

The standard DPA approach allocates total chlorophyll-b, which is representative
of both Prochlorococcus and Chlorophytes, to the picophytoplankton fraction, whereas
19′-hexanoyloxyfucoxanthin is typically attributed to nano-phytoplankton. However,
photosynthetic Picoeukaryotes (PPEs) encompass a variety of taxa, including Prymne-
siophytes, Pelagophytes and Chlorophytes, and can constitute significant components
of picophytoplankton populations because of their larger biovolume and rapid growth
rates compared to cyanobacteria [141]. Chlorophytes usually dominate PPE in nutrient-
rich, upwelling-influenced waters, whilst Prymnesiophytes and Pelagophytes have been
shown to be an important component of the PPE assemblages in oligotrophic waters,
as revealed by a variety of methods including plastid 16S rRNA gene sequencing and
18S rRNA gene sequencing of flow cytometry-sorted samples [154–157]. In the East-
ern Mediterranean Sea, combined datasets from chemotaxonomic (CHEMTAX) analysis
and flow cytometry-based cell counts showed that Pelagophytes belong entirely to pico-
phytoplankton, while Prymnesiophytes can make up to 42% of total Chl-a attributed to
PPEs [158]. These results also agree with carbon-based estimates from the EMS, where
PPEs are found to dominate the picophytoplankton biomass within the surface layer of
open-water stations, despite their significantly lower cell counts compared to cyanobacteria
(Prochlorococcus and Synechococcus) [159]. Prymnesiophytes were also found to be the main
picoeukaryotes that responded positively to a simulated dust deposition mesocosm exper-
iment using EMS waters [160]. The results from a small-scale preliminary evaluation of
19′-hexanoyloxyfucoxanthin and total chlorophyll-b partitioning at a coastal site in the East-
ern Mediterranean support the aforementioned observations (Figure S7). Approximately
65% of total 19′-hexanoyloxyfucoxanthin was attributed to the picophytoplankton fraction,
with the remainder assigned to the nano-fraction (Figure S7). Similarly, around 50% of
total chlorophyll-b was distributed equally between pico- and nano-phytoplankton. These
findings highlight the potential need for modifications to the standard DPA approach.

Furthermore, nanoplanktonic diatoms such as Minidiscus, which predominantly con-
tain the fucoxanthin pigment attributed to microphytoplankton, are known to contribute to
the development of massive spring blooms in the Northwest Mediterranean [142]. Similarly,
microscopic analyses of an interannual time series of phytoplankton size structure from
the E1-M3A monitoring station, located north of Crete in the Eastern Mediterranean, re-
vealed that ~80% (multiyear average) of detected photosynthetic dinoflagellates within the
0–20 m layer belonged to the nanoplanktonic size class (<20 µm), with Gymnodinium spp.
dominating the small (<20 µm) dinoflagellates assemblage (Figure S8). Nanoplanktonic
groups including prymesiophytes and chrysophytes are also known to contain fucoxan-
thin [97,115].
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Given these findings, it is important to consider that further refinements to diagnostic
pigment approaches applied to HPLC data may be necessary to account for the unique
partitioning of pigments among phytoplankton groups in the Mediterranean Sea. A method
for fucoxanthin partitioning between micro- and nano-phytoplankton was proposed by
Devred et al. [115], which has been applied in recent studies on phytoplankton size struc-
ture [67,70,71]. Chase et al. [161] also proposed a series of modifications based on their
comparisons between the traditional diagnostic pigment approach and flow cytometry.
In their study, total chlorophyll-b was split equally between pico- and nanophytoplank-
ton. Additionally, 50% of fucoxanthin and 75% of peridinin—both traditionally assigned
solely to microphytoplankton—were attributed to nanophytoplankton, along with 19′-
hexanoyloxyfucoxanthin and 19′-butanoyloxyfucoxanthin.

To assess whether adjustments to the diagnostic pigment approach (DPA) are worth
consideration for future studies in the Mediterranean Sea, we re-computed phytoplank-
ton size fractions from the HPLC dataset incorporating modified DPA equations based
on the recommendations of Chase et al. [161] and the regional analyses presented here.
Specifically, we assigned 50% of chlorophyll-b and 65% of 19′-hexanoyloxyfucoxanthin to
picophytoplankton, and 75% of peridinin to nanophytoplankton, and divided fucoxanthin
equally between micro- and nanophytoplankton (Equations (20)–(22)). The recalculated
HPLC-derived size fractions were compared with concurrent measurements of size struc-
ture estimated from SFF, predominantly acquired in the oligotrophic waters of the Cretan
Sea in the Eastern Mediterranean (see Section 2). Here, SFF measurements were limited
to two broader size classes: picophytoplankton (0.2–2 µm) and the combined nano- and
micro-phytoplankton assemblage (>2 µm). Thus, comparisons were only conducted for
these two size classes.

Fp =
(0.65W3P3 + 0.5W 6P6 + W7P7)

Cw
(20)

Fn =
(0.5W1P1 + 0.75W2P2 + 0.35W3P3 + W4P4 + W5P5 + 0.5W 6P6 )

Cw
(21)

Fm =
(0.5W1P1 + 0.25W 2P2 )

Cw
(22)

Overall, the HPLC-derived size-fractionated Chl-a concentration estimates, calculated
using the modified DPA (Equations (20)–(22)), show a significant improvement in alignment
with concurrent SFF-based size structure estimates (Figure 8). For both size classes, the
correlation coefficient between the datasets increased, while error metrics were similar
or lower compared to size-fractionated Chl-a estimates derived from the traditional DPA
previously applied in the Mediterranean Sea [56,59]. To verify whether the conceptual
framework of the three-component model remains valid when incorporating the modifed
DPA approach, we re-fitted the SST-independent model (Equations (8) and (9)) to in
situ phytoplankton size fractions computed using Equations (20)–(22). The updated set
of fixed model parameters (Cp

m = 0.29 mg m−3, Cp,n
m = 6.62 mg m−3, Dp = 0.67 and

Dp,n = 0.94) exhibit some substantial differences (notably the markedly high value of Cp,n
m)

due to the different apportioning of diagnostic pigments between size classes. Despite
these changes, the re-parameterized three-component model, when fitted to the updated
training dataset, still explains a similar level of variance in the in situ phytoplankton size
fractions (Fp, Fn, Fp,n and Fm) and size-specific Chl-a concentrations (Cp, Cn, Cp,n and Cm)
when plotted against total Chl-a concentration (Figure S9). Thus, even with potential
future modifications to diagnostic pigment approaches in the Mediterranean Sea, the model
framework presented here will likely remain a robust approach.
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Figure 8. Comparison of size-fractionated Chl-a concentrations for picophytoplankton (<2 µm)
and the combined nano- and micro-phytoplankton (>2 µm) assemblages, based on concurrent
measurements of SFF and HPLC taken at the E1-M3A buoy station north of Crete Island (~35.736◦N,
25.122◦E). The 1:1 line is shown as the solid black line. Two different diagnostic pigment approaches
were utilized for the computation of phytoplankton size fractions from the HPLC data.

It is worth noting that this comparison was based on samples acquired predominately
in the Cretan Sea (Eastern Medierranean Sea), a typical oligotrophic system, exhibiting
year-round low Chl-a concentrations (<0.2 mg m−3). However, we acknowledge that
this comparison may not be representative of broader size–pigment relationships for the
Western Mediterranean Sea; therefore, we highlight the necessity for further examination
into how diagnostic pigments are allocated when deriving PSCs from pigment datasets.
Furthermore, we re-emphasize the importance of incorporating multiple in situ approaches,
such as SFF and flow cytometry, for the independent validation of PSCs and computation of
measurement uncertainties [153,161]. Ultimately, such efforts provide the in situ framework
from which satellite remote sensing approaches can be further developed and improved
upon. Additionally, the model uses satellite-derived Chl-a concentration as its primary
input. Therefore, accurate retrieval of Chl-a is essential—particularly in optically complex
waters where Chl-a may not covary with colored dissolved organic matter (CDOM) or
non-algal particles. While the regional algorithm used for Chl-a retrieval has demonstrated
good performance in Case 2 waters of the Mediterranean Sea [60,61], the application of
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the re-parameterized model in coastal or optically complex environments warrants careful
consideration and further validation.

4. Conclusions
Using an updated HPLC pigment dataset representative of the Mediterranean Sea, we

re-parameterized a conceptual, abundance-based PSC model that partitions phytoplankton
biomass (as represented by the total Chl-a concentration) into three size classes: pico-, nano-
and microphytoplankton. The re-parameterized model is able to effectively represent the
ubiquitous relationships between total phytoplankton biomass and size structure, which
have been documented across a wide range of oceanic environments. The parameters of
the three-component model are known to be directly impacted by physical variables, such
as light availability [70] and temperature [71]. Thus, a second, SST-dependent version of
the re-parameterized model was proposed in this study. Independent, in situ validation of
size-fractionated Chl-a concentrations demonstrated that the SST-dependent model exhibits
an improved performance, with higher or comparable correlation coefficients and reduced
error metrics, particularly for the retrieval of picophytoplankton.

Applying the validated SST-dependent model to remotely sensed ocean color obser-
vations demonstrated a strong correlation between satellite-derived estimates of phyto-
plankton size structure and concurrent in situ measurements. The SST-dependent model
outperformed the conceptual SST-independent model and was comparable to the perfor-
mance of the current operational ocean color dataset from the Copernicus Marine Data
Store, which is based on the regional polynomial algorithms of Di Cicco et al. [59]. Per-pixel
trend analyses, applied to long-term, satellite-derived phytoplankton size fractions revealed
an increasing contribution of smaller phytoplankton across the broader Mediterranean Sea,
accompanied by a decreasing contribution of nano- and micro-phytoplankton, supporting
previous observations within the Mediterranean. Exceptions to this were found in notable
mesoscale features, including semi-permanent gyres, whose characteristics and interannual
variability warrant further investigation.

Building upon existing ocean color modeling frameworks [67,71], the conceptual PSC
model presented in this study differs from prior statistical [59–61,114] and empirical [162]
approaches by directly tying model parameters to the physical environment. This approach
not only improves the retrieval of satellite-derived observations of phytoplankton size
structure but can be carried forward into future studies on the response of phytoplankton
ecological indicators to the continual warming trends of the Mediterranean Sea. Going
forward, the recent launch of new hyperspectral satellite sensors dedicated to Earth observa-
tion, such as those onboard the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)
mission, along with methodological advancements in marine biodiversity assessment, such
as Environmental DNA (eDNA) metabarcoding [163], offers unique opportunities to apply
contemporary approaches for acquiring robust information on phytoplankton community
structure. Given the basin’s unique spatiotemporal variability of phytoplankton popu-
lations, which distinguishes it from other oligotrophic seas [8], we also emphasize that
future research efforts should ideally be directed towards the acquisition of in situ pigment
datasets and concurrent size-fractionated data, which would enable the refinement of
existing diagnostic pigment approaches and further optimization of PSC models tailored
for the Mediterranean Sea.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs17142362/s1. Figure S1: The ratio of total Chl-a concentration
at the shallowest sampling depth to deeper vertical depths (up to 50 m) for each in situ sampling
station. Figure S2: Measured total Chl-a concentration plotted against Chl-a computed by conducting
a weighted sum of the diagnostic pigments (Cw). Figure S3: Comparison of HPLC-derived surface
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total Chl-a concentrations from the independent validation dataset with concurrent, daily satellite-
derived matchups of total Chl-a concentration acquired from the Copernicus Marine Datastore
(OCEANCOLOUR_MED_BGC_L3_NRT_009_141). Figure S4: Application of the three-component
phytoplankton size class model to subsets of the Fp,n training dataset, sorted by increasing sea surface
temperature. Figure S5: Comparison of PSCs between in situ and modeled size-fractionated Chl-a
concentrations based on the full training dataset. Figure S6: Radar plots comparing statistical error
metrics for satellite-derived, size-specific chlorophyll-a (Chl-a) concentrations from the Copernicus
operational dataset, the SST-independent model and the SST-dependent model. Figure S7: Allocation
of 19′-hexanoyloxyfucoxanthin and total chlorophyll-b to total size-fractionated Chl-a concentrations
in the Cretan Sea. Figure S8: Monthly time series of dinoflagellates, partitioned by size (>20 µm and
<20 µm) based on optical microscopy measurements acquired at the POSEIDON E1-M3A buoy time
series situated north of Crete (~35.736◦N, 25.122◦E). Figure S9: Fits of the re-parameterized three-
component model to the HPLC training dataset computed using the modified diagnostic pigment
approach. Table S1: Weights for the seven diagnostic pigments, obtained through multi-linear least
squares regression, used in the diagnostic pigment analyses in Section 2.2.1, along with comparisons
to relevant previous studies.
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