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ARTICLE INFO ABSTRACT

Keywords: Desalination is becoming increasingly important to meet the growing demand for freshwater. However, a major
Desalination drawback of this technology is the production of hypersaline brine. This by-product contains salts and con-
Brine

taminants that have been removed during the desalination process, including antiscalants, cleaning agents,
heavy metals, and organic compounds. Instead of disposing of this brine and causing environmental harm, new
strategies should be developed to transform brine from a burden into an opportunity with environmental and

Environmental impact
Circular economy

Biotechnology

economic benefits. Brine can harbor halotolerant and halophilic microorganisms, making it a valuable resource
for studying microbial diversity, adaptations and exploring untapped biotechnological opportunities in phar-
maceutical, industrial, and ecological fields. We propose two strategies of innovation: (i) using brine to cultivate
micro- and macro-organisms, both of which can create circular economy models tailored to global and local
needs. (ii) In addition, the amount of brine generated by desalination plants can be reduced by integrating or
coupling them with biodesalination modules. These modules would harness halotolerant and halophilic organ-

isms to retain and assimilate salts, reducing the environmental impact of desalination.
1. Introduction Desalination techniques are used for removing salt and other impurities
from seawater or brackish water to generate freshwater for various
Desalination is not a recent method for obtaining potable water; purposes, including drinking, irrigation, and industrial applications
sailors have practiced seawater desalination for centuries (Greenlee (Kucera, 2014). A 2019 report from the International Desalination As-
et al., 2009). However, it has only seen significant expansion and sociation (International Desalination Association; Ihsanullah et al.,
industrialization in the past half century (Elimelech and Phillip, 2011). 2021) notes that there are 19,744 desalination plants in more than 150

* Corresponding author.

E-mail addresses: ana.rotter@nib.si (A. Rotter), buki@ocean.org.il (B. Rinkevich), iremdenz@gmail.com (I. Deniz), maggiereddy0402@gmail.com (M.M. Reddy),
marianagiraol 295@gmail.com (M. Girao), mcarvalho@ciimar.up.pt (M.F. Carvalho), nina.gunde-cimerman@bf.uni-1j.si (N. Gunde-Cimerman), cene.gostincar@bf.
uni-lj.si (C. Gostin€ar), mcueto@ipna.csic.es (M. Cueto), adiazmar@ipna.csic.es (A.R. Diaz-Marrero), v.p.komarysta@karazin.ua (V. Komarysta), fusunnakgul@
gmail.com (F. Akgul), llbilela@pmf.unsa.ba (L.L. Bilela), ernesta.grigalionyte-bembic@nib.si (E. Grigalionyte-Bembi¢), mandalakis@hcmr.gr (M. Mandalakis).

https://doi.org/10.1016/j.wroa.2025.100372
Received 5 February 2025; Received in revised form 25 May 2025; Accepted 26 June 2025

Available online 30 June 2025
2589-9147/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-6879-0980
https://orcid.org/0000-0002-6879-0980
https://orcid.org/0000-0001-8243-9567
https://orcid.org/0000-0001-8243-9567
https://orcid.org/0000-0002-1193-9967
https://orcid.org/0000-0002-1193-9967
https://orcid.org/0000-0002-7181-0540
https://orcid.org/0000-0002-7181-0540
https://orcid.org/0000-0002-0149-3674
https://orcid.org/0000-0002-0149-3674
https://orcid.org/0000-0003-2830-0980
https://orcid.org/0000-0003-2830-0980
https://orcid.org/0000-0002-2186-5746
https://orcid.org/0000-0002-2186-5746
https://orcid.org/0000-0001-7423-6284
https://orcid.org/0000-0001-7423-6284
https://orcid.org/0000-0002-7469-4290
https://orcid.org/0000-0002-7469-4290
mailto:ana.rotter@nib.si
mailto:buki@ocean.org.il
mailto:iremdenz@gmail.com
mailto:maggiereddy0402@gmail.com
mailto:marianagirao1295@gmail.com
mailto:mcarvalho@ciimar.up.pt
mailto:nina.gunde-cimerman@bf.uni-lj.si
mailto:cene.gostincar@bf.uni-lj.si
mailto:cene.gostincar@bf.uni-lj.si
mailto:mcueto@ipna.csic.es
mailto:adiazmar@ipna.csic.es
mailto:v.p.komarysta@karazin.ua
mailto:fusunnakgul@gmail.com
mailto:fusunnakgul@gmail.com
mailto:llbilela@pmf.unsa.ba
mailto:ernesta.grigalionyte-bembic@nib.si
mailto:mandalakis@hcmr.gr
www.sciencedirect.com/science/journal/25899147
https://www.sciencedirect.com/journal/water-research-x
https://doi.org/10.1016/j.wroa.2025.100372
https://doi.org/10.1016/j.wroa.2025.100372
http://creativecommons.org/licenses/by/4.0/

A. Rotter et al.

countries worldwide (of which 48 % in Middle East and North Africa -
MENA) (Eke et al., 2020), supplying fresh water to over 300 million
people. The total output of desalinated water has seen significant
growth, increasing from around 25 million cubic meters per day in 2000
to approximately 95 million cubic meters per day in 2019 (L. Gao et al.,
2021). According to the United Nations, nearly 7 billion people across
60 countries will experience severe water scarcity by 2050 (Ihsanullah
et al., 2021).

Currently, desalination technologies fall into two main categories:
thermal and membrane-based methods (reviewed in Curto et al., 2021
(Curto et al., 2021), Harby et al., 2024 (Harby et al., 2024) and Cai et al.,
2023 (Cai et al., 2023)). Thermal desalination is highly energy-intensive
due to the substantial energy required for water phase changes, owing to
water’s high enthalpy of evaporation. The principal thermal desalina-
tion techniques include multi-effect distillation (MED), multi-stage flash
distillation (MSF), and thermal vapor compression (TVC). Membrane
desalination methods use high pressure of motor pumps to separate
water from highly concentrated saline solutions. As a result, membrane
methods are dependent on electrical power. Membrane methods are
primarily classified into reverse osmosis (RO), electrodialysis (ED), and
nanofiltration (NF). While RO systems generally produce lower-quality
freshwater compared to thermal processes, they are considered
cleaner and safer, operating at lower energy levels, temperatures, and
pressures. However, membrane systems can be expensive for large-scale
applications, and membrane materials may degrade over time due to
excessive wetting. To enhance RO performance and lower water pro-
duction costs, hybrid systems that combine RO with thermal methods,
such as TVC, MED, or MSF, are being developed. Among these, RO-TVC,
RO-MED, and RO-MSF configurations are the most common. Globally,
RO plants account for 68.7 %, MSF 17.6 %, MED 6.9 %, NF 3.4 %, ED 2.4
%, and other methods making up the remaining 1.0 % (Jones et al.,
2019).

In general, the ion concentration of brackish water is much lower
than that of seawater and therefore brackish brine has a lower ion
concentration and lower total dissolved solids than seawater. For
seawater brine, there are also variations in ion concentrations and total
dissolved solids depending on the location of the plant, technology and
the type of intake, open seawater or beach well (Supplementary File 1).

During the desalination process, seawater is split into two compo-
nents: the permeate (desalinated water) and the concentrate (effluent,
known as brine). Desalination brine contains residual salts, minerals,
and chemicals (Jones et al., 2019). Recent estimates suggest that global
brine production exceeds 140 million ms/day (Jones et al., 2019). This
figure is anticipated to rise further in the future due to growing water
scarcity and an increased demand for desalination. The latter is
increasing particularly in freshwater-scarce regions such as MENA,
which host around half of the world’s saltwater desalination operations.
Brine disposal can negatively affect the environment, so finding ways to
manage its use across diverse applications can yield positive environ-
mental benefits (Panagopoulos et al., 2019), and can also generate
economic value. Indeed, the use of desalinated water is associated with
higher environmental concerns by the general population than the use of
recycled water (Dolnicar and Schafer, 2009). Additionally, the use of
desalinated water for irrigation is also associated with environmental
concerns, of which the significant majority relate to brine disposal
(Ghermandi and Minich, 2017). Consequently, a technological break-
through is needed to tackle the increasing issue of brine generation. This
would address environmental concerns, improve the acceptance of
desalination in regions outside MENA from policy, scientific, environ-
mental and general population perspectives. All of this motivated this
study, where we asked the questions that are most commonly asked in
discussions on the possibility of expanding desalination operations and
increasing the acceptability of the use of desalinated water. The ques-
tions were addressed under two categories:
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1. Environment: What is brine composed of? Where does it go (envi-
ronmental fate) and how does it affect the environment?

2. Valorization of brine: What are the possibilities to valorize brine and
decrease its impact on the environment? We focused on the
biotechnological solutions involving macro and microorganisms, as
well as biodesalination processes, all of which represent an innova-
tion and opportunity to establish circular solutions, which can
positively influence the acceptability from the scientific, social and
policy levels due to the possibility of novel commercial applications,
investments and job creation.

2. Materials and methods

A structured narrative literature review was conducted to synthesize
current knowledge on micro- and macro-organisms that can be culti-
vated using desalination brine effluent within the framework of a cir-
cular bioeconomy. To identify relevant studies, major scientific
databases were searched, including Scopus, Web of Science, and Google
Scholar. For plant-related studies, additional data were cross-referenced
using the specialized eHALOPH (https://ehaloph.uc.pt) database.

The search strategy combined organism-specific and thematic key-
words using Boolean operators. The following organism-specific terms

o, »

were used: “microorganism”, “halophile”, “saline”, “bacteria”, “cyano-

CLEITS (LI

bacteria”, “fungi”, “microalgae”, “macroalgae”, “halophytes”, “Artemia

2 2

salina”, “Tilapia”, “diversity”. The thematic keywords included: “desa-
lination brine”, “salt tolerance”, “salinity stress”, “cultivation”, “biomass
production”, “bioproducts”, “biosaline agriculture”, “aquaculture”,

LTS 2

“hypersaline biotechnology”, “halophilic crops”, “halophilic farming”,
“biodesalination”, “sustainability desalination”.

The inclusion criteria were as follows: studies on species able to
thrive under high salinity, or cultivated under saline, brackish, or hy-
persaline conditions; publications describing the use of such organisms
in agriculture, aquaculture, bioremediation, bioenergy, or high-value
product manufacturing; papers including physiological, biochemical,
or techno-economic data relevant to cultivation or application. Only
publications containing non-redundant relevant data were cited. Some
market reviews were included to reflect the demand, economic value,
and scale-up limitations for bioproducts that can be produced using
desalination brine. Studies focused solely on molecular or genomic data
without context for cultivation or practical applications were excluded.

3. Environmental fate of rejected brine

Several common methods exist for managing desalination brine. The
most economical and widely used approach, employed by over 90 % of
global seawater plants, involves discharging brine into surface water
bodies, such as rivers, lakes, wetlands and coastal areas, after adequate
dilution, to minimize localized impacts on the ecosystems
(Panagopoulos et al., 2019). Brine disposal into wastewater collection
systems or at the outfall of wastewater treatment and power plants is
also common, particularly in small-scale desalination units (Voutchkov,
2011). In both cases, the brine is eventually diluted in larger water
volumes, becoming part of the aquatic environment. Some desalination
facilities use evaporation ponds to handle brine, leaving behind
concentrated salts and minerals (Ahmed et al., 2000). This method
effectively reduces brine volume, which can be particularly applicable in
arid regions, and minimizes environmental impact when the pond base
is lined with an impermeable geomembrane. If this is not properly done,
brine components can leach into adjacent soils and underlying aquifers
(Mohamed et al., 2005). Another widely used method is deep-well in-
jection, which involves placing desalination brine into coastal under-
ground aquifers that are naturally isolated from surrounding water
bodies. While there is a slight risk of brine leaking back to the ocean, this
approach is generally considered environmentally friendly and
cost-effective (Stein et al., 2021).


https://ehaloph.uc.pt
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4. Brine contaminants

Desalination plants are typically located near coastal marine habitats
for practical reasons, providing clear socio-economic benefits for
humans. However, this proximity can also pose ecological risks to the
surrounding marine environments (Panagopoulos and Haralambous,
2020). Despite growing concerns regarding the potential environmental
impacts of the growing desalination industry, research on the effects of
brine discharge remains limited. When brine is discharged from desa-
lination plants, it often contains elevated levels of nutrients and con-
taminants acquired during the desalination process, all of which harm
marine ecosystems if not properly managed. Among the different con-
taminants that can be present in reject brine, heavy metals have tradi-
tionally been of highest concern. Metals, such as cadmium, cobalt,
copper, mercury, vanadium, iron, lead, zinc, copper, and arsenic, may
be present from the use of scale inhibitors, which are added at different
points of the desalination process or to maintain the desalination facil-
ities. These metals are known to accumulate in marine sediments close
to desalination plants (Sadiq, 2002; Ahmad and Baddour, 2014). Studies
show that these contaminants decrease in concentration with distance
from the brine discharge point, indicating that it acts as a point source of
metals pollution.

Besides metals, reject brine may contain various by-products and
residues from chemicals used as anti-scaling, anti-foaming and anti-
corrosion agents in desalination plants (Ihsanullah et al., 2021; Shokri
and Sanavi Fard, 2023). Polyphosphates were the first generation of
antiscalants, however they were found to contribute to eutrophication as
they are readily hydrolyzed to orthophosphate (AQUA-CSP 2007).
Consequently, they were replaced by polyphosphonates and poly-
carbonic acids (e.g., polyacrylic and polymaleic acids), which are more
resistant to hydrolysis. Their discharge levels are generally considered
non-hazardous, as they are well below concentrations that could cause
toxic or chronic effects in higher organisms (AQUA-CSP 2007). Never-
theless, the use of antiscalants has been shown to influence the
composition of bacterial communities in marine environments
(Al-Ashhab et al., 2022). There are also concerns regarding more
persistent agents, as they may complex with metal ions after being
discharged into coastal waters, affecting dissolved metal concentrations
(AQUA-CSP 2007). Overall, there is a growing interest in using new
antiscalants that are more biodegradable, environmentally friendly and
free of phosphorus or nitrogen (Kress et al., 2020).

Several other chemicals are commonly used in desalination plants
and may end up in reject brine, as discussed in numerous reviews
(Thsanullah et al., 2021; Shokri and Sanavi Fard, 2023; AQUA-CSP 2007;
Tularam and Ilahee, 2007; Lattemann and Hopner, 2008; Chang, 2015;
Kim et al., 2015). For instance, polyethylene and polypropylene glycol
are two well-known antifoaming agents frequently added to feedwater
of thermal desalination plants. Additionally, various chemicals are used
for disinfecting seawater intakes and managing biofouling in desalina-
tion systems (e.g., RO membranes, heat exchangers), such as chlorine,
chlorine dioxide, chloroamines, sodium hypochlorite, sodium bisulfite,
sodium hydroxide. More toxic agents including formaldehyde, glutar-
aldehyde, isothiazole and sodium perborate have also been reported,
particularly for disinfecting membranes (Ihsanullah et al., 2021;
AQUA-CSP 2007; Lattemann and Hopner, 2008). It is worth noting that
free chlorine is the most commonly used disinfectant in desalination
plants. Its reaction with organic matter in seawater can produce various
genotoxic by-products (e.g., trihalomethanes, haloacetic acids, haloni-
tromethanes, haloacetonitriles), which are of high environmental
concern (Kim et al., 2015). Chemicals are also employed to inhibit
corrosion and protect the metallic surfaces within desalination systems.
They typically include oxygen scavengers that reduce oxygen content in
feed water, such as sodium sulfite and bisulfite, hydrazine and its less
toxic carbohydrazide substitute. Ferrous sulphate and benzotriazole are
added to facilitate the formation of a corrosion-resistant protective
coating (Thsanullah et al., 2021; Shokri and Sanavi Fard, 2023;
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AQUA-CSP 2007). More recently, a mixture of film-forming and alkal-
izing amines and polycarboxylates has been introduced for the protec-
tion of metallic surfaces in desalination plants (Mahmoodur Rahman
et al., 2023). Furthermore, iron-based coagulants, such as ferric sulfate,
ferric hydroxide and ferric chloride, are commonly added to seawater
intake to improve the removal of suspended and fine particles, while
aluminum salts are infrequently used due to their potential to cause
fouling of RO membranes (Drami et al., 2011; Kavitha et al., 2019). As a
result of filter backwashing in desalination plants, coagulants can end up
in the reject brine (lhsanullah et al., 2021; Chang, 2015; Drami et al.,
2011). While most of these chemicals are expected to be present in the
reject brine at relatively low levels, the actual impact of combined
exposure to various brine contaminants on marine life remains
uncertain.

5. Environmental impact

Brine disposal can negatively affect the marine environment due to
its high salinity, temperature and the presence of various contaminants
(Capé et al., 2020; Benaissa et al., 2020; Omerspahic et al., 2022).
However, the latter are often considered less significant and the most
adverse effects on marine organisms are typically linked to the localized
increase of salinity and the resulting ‘lethal osmotic shock’. This can
create unfavorable conditions for marine organisms that are adapted to
narrow salinity ranges (Panagopoulos and Haralambous, 2020; Rothig
et al., 2023). Consequently, species density and diversity may be
affected (de-la-Ossa-Carretero et al., 2016; Kress, 2019), with some
species being pushed out of their preferred habitats, leading to alter-
ations in community composition and distribution, increased competi-
tion for resources and potential mortality for more vulnerable species
(Kelaher et al., 2022). Additionally, brine can lower pH (Noori et al.,
2021), which may pose further risks to calcifying marine organisms and
reef-associated macroinvertebrate communities (Fabricius et al., 2014).

The temperature of brine produced by RO plants typically does not
differ significantly from that of ambient seawater, whereas the
concentrate discharged from thermal desalination plants is usually 5-15
°C warmer. This increase in water temperatures can lead to “thermal
pollution” at the discharge site. The effects on species distribution due to
altered annual temperature profiles at the discharge site are of compa-
rable importance to those caused by changes in salinity. Marine organ-
isms may either be attracted or repelled by warmer water, potentially
enabling species with higher heat tolerance to eventually dominate at
the discharge site (Miri and Chouikhi, 2005; Lattemann, 2010). In
extreme cases, thermal discharge may result in increased mortality
among sessile marine species (Pennington and Cech, 2009).

Brine can accumulate on the seabed, forming a persistent layer that
disrupts benthic communities. This has been shown to negatively affect
sessile invertebrates such as bryozoans (Microporella sp., Smittina sp. and
Calloporina sp.), sponges, kelp (Ecklonia radiata) and polychaetes
(Pomatoceros taeniata and Hydroides elegans), leading to a significant
decline in their populations (Clark et al., 2018; Kelaher and Coleman,
2022). The impact of brine discharge has also been evidenced by the
disappearance of echinoderms (i.e., Paracentrotus lividus and Holothurian
spp.) as well as increased leaf necrosis of Posidonia oceanica meadows
(Latorre, 2005; Fernandez-Torquemada et al., 2005; Gacia et al., 2007;
Del Pilar Ruso et al., 2007; Sanchez-Lizaso et al., 2008; Cambridge et al.,
2019). In addition to P. oceanica, brine discharges have been reported to
adversely affect the red algae Rissoella verruculosa and seagrass meadows
of Cymodocea nodosa and Caulerpa prolifera (Sadhwani et al., 2005).
Since seagrasses, corals and other key species provide habitats for
numerous associated and dwelling organisms, the effects of brine on
these habitat-forming species (Petersen et al., 2018) could significantly
impact local biodiversity. Therefore, well-designed desalination opera-
tions can help mitigate their potential negative effects on the marine
environment (Kelaher et al., 2022).

Non-sessile marine animals can successfully adapt to environmental
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changes, such as shifts in salinity, by migrating to more suitable habitats
(Missimer and Maliva, 2018). While tolerance to hypersalinity varies
between different species, most of them avoid salinity above 50 PSU
(Remaili et al., 2018). Generally, polychaete and crab species tend to
have the highest tolerance, and are able to survive salinities up to 60
PSU for extended periods. Gastropods and bivalves display moderate
tolerance, while shrimps, copepods and amphipods are the least tolerant
(Omerspahic et al., 2022; de-la-Ossa-Carretero et al., 2016; Momtazi and
Maghsoudlou, 2022; Bianchelli et al., 2022). Significant changes in
polychaete communities were observed along a transect in front of
Alicante desalination plant, Spain, where the families Ampharetidae,
Nephtyidae and Spionidae were particularly sensitive to brine dis-
charges (Del Pilar-Ruso et al., 2008). In the same area, a decrease in the
abundance of Polychaeta, Bivalvia, Decapoda, Amphipoda, along with
an increase in Nematoda was observed near the brine discharge point
(Del Pilar Ruso et al., 2007). Conversely, a study at the Las Burras
desalination plant, Gran Canaria, revealed a sharp decline in benthic
meiofaunal abundance (i.e., nematodes and copepods), with significant
changes in their assemblage structure immediately adjacent to the brine
discharge point (Riera et al., 2011). At the Carlsbad desalination plant,
California USA, a significant increase in epifauna (e.g., Polychaeta,
algae, Anthozoa, Echinodermata, Gastropoda) was observed in the im-
mediate discharge area shortly after operations began (Lykkebo
Petersen et al., 2019). This change was attributed to the differential
survival of organisms in the salinity plume, likely due to reduced pre-
dation of polychaetes by larger organisms avoiding high salinity waters,
rather than brine-induced toxicity.

Significant effects at the microbial level have been reported in the
literature. A study conducted at three desalination facilities along the
Israeli coast reported that the abundance and growth efficiency of
benthic bacteria were 1.3-2.6 times higher at the outfall area than the
background stations, accompanied by notable differences in bacterial
community structure (Frank et al., 2019). In the same area, the number
of picophytoplankton cells in seawater near the outfall decreased,
though this reduction was primarily attributed to elevated temperature
rather than higher salinity of the reject brine (Drami et al., 2011).
Furthermore, several studies suggest that bacteria are more sensitive to
salinity fluctuations than archaea (Mani et al., 2020; Balzano et al.,
2021), which, unlike bacteria, can withstand large salinity fluctuations
and achieve a stable community structure in a short period of time.

At the level of individual organisms, elevated salinity can impact
their cellular and sub-cellular functions, disrupting essential biological
processes such as reproduction and growth, particularly in early life
stages (Mak and Chan, 2018; Rosner et al., 2023). This can hinder the
long-term survival of populations or prevent some species from estab-
lishing in certain areas. Moreover, the combination of increased salinity
and high nutrient levels from brine discharge may promote harmful
algal blooms (Al Shehhi et al., 2014), which can produce toxins harmful
to marine life and create "dead zones" with critically low oxygen levels.
In addition to toxins, brine pollutants, such as heavy metal leaching from
corroded pipelines (Kim et al., 2015; Chowdhury, 2019), can accumu-
late in the vicinity of desalination plants, exacerbated by accidental oil
spills (Ogunbiyi et al., 2023). Additional examples about the effects of
desalination brine and elevated salinity on marine life are listed in
Table 1, corroborating that these are multifaceted and
organism-specific. This underscores the need for careful management
and mitigation strategies in desalination practices to protect marine
biodiversity.

The environmental impact of specific chemicals present in reject
brine is challenging to evaluate. Laboratory studies have shown that
commercial antiscalants commonly used in seawater desalination plants
(e.g., polyacrylate, polyphosphonate and carboxylated dendrimers) can
act as carbon sources, influencing bacterial diversity and community
composition in marine environments (Al-Ashhab et al., 2022). More-
over, aquaria experiments revealed that the combined exposure to
elevated salinity and a polyphosphonate-based antiscalant had more
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Table 1
Observed environmental effects of brine on selected marine species.

Species

Observed Effect

Reference

Posidonia oceanica
Mytilus
galloprovincialis

Diopatra neapolitana

Paracentrotus lividus

Red abalone, purple
urchin and sand
dollar

Mysid shrimp and
topsmelt fish

Sea bream juveniles

Reduced growth/vitality at 39.1
PSU; 50 % mortality at 45 PSU
within 15 days of exposure
Developmental abnormalities in
>50 % of the larvae exposed to
brine of 41.7 - 58.4 PSU

50 % mortality and significant
reduction in tissue regenerative
capacity after exposure to brine of
42 PSU

Egg fertilization failure and
abnormal larval development after
an exposure to brine of 44 — 52
PSU

Reduced larval development in 50
% of the population after an
exposure to diluted brine of 36.8,
38.1 and 39.6 PSU

50 % mortality of larvae after an
exposure to diluted brine of 47.8
and 61.9 PSU, respectively
Darkened coloration of the body

(Sanchez-Lizaso
et al., 2008)

(Quintino et al.,
2008)

(Pires et al., 2015)

(Quintino et al.,
2008)

(Voorhees et al.,
2013)

(Voorhees et al.,
2013)

(Iso et al., 1994)

after 30 min exposure to brine of 50
PSU and 25 % mortality after 24
hours exposure

severe negative effects on the physiology of reef-building corals
(including reduced CO5 uptake and protein content in corals and a
decline in their symbiotic microalgae) compared to high salinity alone
(Petersen et al., 2018).

Maintaining balance in marine communities is crucial for a healthy
marine ecosystem. Therefore, it is important to exercise caution when
establishing desalination plants near sensitive marine ecosystems, such
as coral reefs (Petersen et al., 2018), mangroves, seagrass meadows
(Gacia et al., 2007) and kelp forests. The key species in these ecosystems
are habitat forming marine organisms (that also form sensitive marine
animal forests) (Rossi et al., 2022) and changes in their abundance can
have significant effects on a plethora of associated and residing marine
organisms. Overall, while the impacts of brine discharge and its asso-
ciated chemicals are typically localized and considered less harmful than
other industrial waste, they should not be disregarded. Regular moni-
toring is essential to assess the tolerance of marine life to desalination
effluent, particularly the high content of salt (Fernandez-Torquemada
et al., 2019), and alternative management strategies are needed to
minimize the environmental impact.

6. Innovative solutions to reduce the environmental impact

To minimize the environmental impact of desalination brine, it is
essential to explore innovative solutions for its utilization. Additionally,
with 5 %—33 % of the total desalination cost attributed to brine disposal
(Ahmed et al., 2001), it is crucial to identify value-generating solutions
from brine. This can be done through two strategic approaches: (i) use of
brine for cultivation of biotechnologically relevant organisms, and (ii)
employment of biodesalination technologies to reduce the quantities of
brine. By doing so, brine can be transformed into a resource, enabling
the implementation of circular solutions that enhance desalination
efficiency.

6.1. Brine as a matrix for cultivation of biotechnologically relevant
microorganisms

Modern molecular techniques such as metagenomics, metatran-
scriptomics, and metaproteomics, have provided an opportunity to
study brine-associated microbial communities. These methods not only
offer a deeper understanding of the diverse microorganisms thriving in
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saline environments but also reveal valuable insights into their func-
tional potential (Vavourakis et al., 2016; Maseh et al., 2021). In addition
to salinity, factors such as temperature, nutrient availability, and pH
play critical roles in shaping brine microbial communities. Their func-
tional traits extend beyond environmental roles like nutrient cycling,
organic matter degradation, and nitrogen fixation, encompassing a
highly valuable secondary metabolism. Halophilic microorganisms, in
particular, possess unique metabolic pathways and bioactive molecules
(Ortega Méndez et al., 2012; Fabiszewska et al., 2022). Utilizing brine in
fermentations and cultivations presents an efficient and cost-effective
approach for producing biotechnologically-relevant metabolites, trans-
forming a potential waste into a valuable resource. Below, we highlight
some of the most promising organisms for such use.

6.1.1. Bacteria
The unique cellular enzymatic machinery and metabolic traits of
bacterial halophiles enable them to balance the osmotic pressure of the
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environment and resist the denaturing effects of salts (DasSarma and
Arora, 2001). Bacterial halophiles are distributed across many phylo-
genetic groups, comprising aerobic, anaerobic, chemoheterotrophic,
photoheterotrophic, and/or photoautotrophic species. Some of the most
relevant phyla hosting salt-loving bacteria include Pseudomonadota,
Firmicutes, Actinomycetota, Bacteroidota and Cyanobacteria, each one
of them with several genera and species identified, showcasing the
richness of microbial life in these extreme habitats. Some representative
Pseudomonadota able to thrive in brine substrates belong to Halomonas
and Salinivibrio genera (Gorriti et al., 2014; Carlson et al., 2016). For
Firmicutes, a classic example is the genus Halobacillus (Chen et al.,
2009). Regarding the phylum Actinomycetota, species affiliated to
Streptomyces, Micromonospora or Salinactinospora have been described as
true inhabitants of such hypersaline conditions (Chang et al., 2012;
Villalobos et al., 2021), while in the phylum Bacteroidota the genus
Psychroflexus includes various representatives that have been isolated
from brine samples (Chun et al., 2014). When mentioning the

Table 2
Selected microorganisms for potential cultivation in brine with their biotechnological applications.
Organism and phylum Genus Biotechnological applications Reference
Bacteria: Pseudomonadota ~ Halomonas Hosts for microbial cell factory engineering (Ye and Chen, 2021)
Biopolyesters such as polyhydroxyalkanoates (PHA) and polyhydroxybutyrate  (Benitez-Mateos and Paradisi, 2023; Aytar Celik
(PHB), gaseous hydrocarbon (bio-propane), osmolytes (ectoine) used as a et al., 2023; Chen et al., 2022; Faulkner et al., 2023)
moisturizer for skin care and anti-aging cosmetics
Bacteria: Pseudomonadota Salinivibrio PHA and ectoine (Van Thuoc et al., 2020; Guynn et al., 2023)
Decolorization and bioremediation of synthetic dyes (John et al., 2020)
Bacteria: Firmicutes Halobacillus Carotenoids (antioxidants) (Kocher et al., 2009)
Enzymes (industrial applications — detergents) (Santos et al., 2021)
Bacteria: Actinomycetota Streptomyces Antimicrobials, enzymes, pigments, cell factory engineering (Dharmaraj, 2010; Alam et al., 2022; Del Carratore
et al., 2022; Liu et al., 2024)
Bacteria: Actinomycetota Micromonospora Antimicrobials, anticancer compounds (Boumehira et al., 2016; Abdel-Mageed et al., 2021;
Yan et al., 2022)
Enzymes (Carro et al., 2018)
Bacteria: Actinomycetota Salinactinospora Antimicrobials (Claverias et al., 2015)
Bacteria: Bacteroidota Psychroflexus ~ Exopolysaccharides, polyunsaturated fatty acids (for thermostability) (Feng et al., 2014)
Bacteria: Cyanobacteria Aphanothece Biostimulants (Fal et al., 2023)
Energy (Chinchusak et al., 2023)
Bacteria: Cyanobacteria Euhalothece Pigments, mycosporine-like amino acids (MAAs) (for biomedicine, cosmetics) ~ (Mogany et al., 2018; Yang et al., 2020)
Bacteria: Cyanobacteria Halothece Phenolic compounds, phycobiliproteins and MAAs (Patipong et al., 2019)
Bacteria: Cyanobacteria Phormidium Fertilizer supplement (Koch et al., 2022)
Nanomedicine, bioremediation (Asif et al., 2023)
Bacteria: Cyanobacteria Halospirulina Additives, stabilizers, sweeteners (Kuroiwa et al., 2014)
Bacteria: Cyanobacteria Spirulina Protein and pigment (phycocyanin) for medical applications and food colorant (Sandeep et al., 2013; Jester et al., 2022; Mittal
et al., 2024)
Carbohydrates and lipids for biofuels (bioethanol and biodiesel) (Mata et al., 2020)
Biomass as fertilizer or animal feed (Matos et al., 2021)
Bacteria: Cyanobacteria Halomicronema Toxic compounds for medical applications (Mutalipassi et al., 2019)
Pigments (dyes, colourants, cosmetics) (Patel et al., 2018)
Fungi: Ascomycota Aureobasidium Enzymes, polysaccharides, biosurfactants (food, energy, materials) (Wang et al., 2022; Rensink et al., 2024)
Aspergillus
Fungi: Ascomycota Cladosporium  Enzymes (wastewater treatment) (Ben Hmad and Gargouri, 2024)
Medicine (Agrawal et al., 2024)
Fungi: Ascomycota Penicillium Bioremediation (Bonaventure et al., 2023)
Biostimulants (Tarroum et al., 2022)
Enzymes (Toghueo and Boyom, 2020)
Microalgae: Chlorophyta Chlorella Bioremediation, energy, construction, bioplastics (Almutairi et al., 2021; Al-Hammadi and
Gilingormiisler, 2024)
Cell factory hosts (Gu et al., 2023)
Microalgae: Chlorophyta Scenedesmus Lipids (for energy) (Anand et al., 2019; Calhoun et al., 2021)
Bioremediation (Maeng et al., 2018)
Microalgae: Chlorophyta Dunaliella Lipids, proteins, pigments, glycerol (food, energy, cosmetics, medicine), (Barbosa et al., 2023; Silva et al., 2021; Borowitzka,
bioremediation 2013; Khan et al., 2018)
Microalgae: Gyrista Nannochloropsis Lipids, cell factory hosts (food, biofuels, oleochemicals) (ElBarmelgy et al., 2021; Xu, 2022; Canini et al.,
2024)
Plants: Salicornia Protein (Oron et al., 2023; Park et al., 2023)
Amaranthaceae Fiber, vitamins, polyphenols (Fitzner et al., 2021)
Chlorophylls, carotenoids (Lyra et al., 2022)
Food (Al-Tamimi et al., 2023)
Animal feed, biofuel (Fitzner et al., 2021)
Soil remediation
Plants: Atriplex Animal feed, soil remediation, erosion control, revegetation, landscaping (Lucker et al., 2023; Gomez-Bellot et al., 2021;
Amaranthaceae Glenn et al., 2009; Rocha de Moura et al., 2019;

Jordan et al., 2009)
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photoautotrophic Cyanobacteria, a diverse range of genera was reported
to live at high salinities, including Aphanothece, Euhalothece, Halothece,
Phormidium, Halospirulina and Halomicronema (Oren, 2015). In addition,
salty environments are a rich source of novel taxa. In fact, representing a
distinct niche from other habitats, some novel phyla have been exclu-
sively found in salt-saturated conditions, highlighting the evolution of
specialized microbial communities in these environments (Ghai et al.,
2011). Either recovered using classic culture approaches, or based on
metagenomic insights, examples include the extremely halophilic Sali-
nibacter ruber, isolated from saltern crystallizer ponds (Anton et al.,
2002), the moderately halophilic bacterium Spiribacter salinus retrieved
from a saltern (Leon et al., 2014), or the exceptionally halotolerant
Anianabacter salinae, isolated from brine of a millennial continental
saltern (Azpiazu-Muniozguren et al., 2022).

Halophilic bacteria can thus be cultivated in brine. Moreover, inte-
grated circular cultivation systems of high socio-economic and envi-
ronmental perspective have been proposed for inland desalination
concentrates. An example includes Spirulina cultivation, fish Tilapia
farming, irrigation of halophyte Atriplex plant fields, and feeding live-
stock with the harvested biomass that is of particular interest in rural
arid regions (Sanchez et al., 2015). In another study, where a halophilic
mixed culture was used for the treatment of industrial residual process
brine, up to 100 % removal of MgCl, was achieved (Mainka et al., 2022).

Examples of biotechnologically relevant activities include anticancer
properties that have been recorded from bacterial halophiles isolated
from brine-seawater interfaces affiliated to the Halomonas and Sulfito-
bacter genera (Sagar et al., 2013), or the discovery of novel enzymes
such as proteases, amylases, and lipases that can perform catalytic re-
actions under harsh biophysical conditions, and are thus greatly useful
in industrial processes (Renn et al., 2021). The vast array of potential
biological applications of microorganisms that could be cultivated using
brine is presented in Table 2.

6.1.2. Fungi

Cultivable fungi in desalination waters, to the best of our knowledge,
have not been investigated in great detail. Only certain fungal species,
such as representatives of the genera Fusarium and the black yeast
Phialophora were found to colonize cellulose acetate filters from RO
desalination processes (Ho et al., 1983). Nevertheless, extremophilic
and extremotolerant fungi, also those that were isolated from hypersa-
line environments, have an interesting potential to be used in several
industries (enzymes, antibiotics, Table 2). They have also potential in
agriculture as plant-growth promoting microorganisms, but only after
balancing their potential dual role both as mitigators of crop diseases
and as opportunistic pathogens (Yarzabal Rodriguez et al., 2024).
Generally, fungal biodiversity has been based on investigations of
biofouling and mixed prokaryotic-eukaryotic microbial biofilms formed
in different parts of desalination plants. There, fungal communities were
dominated by Ascomycota (98 %), while Basidiomycota made up about
2 %, and the rest were Glomeromycota and unclassified fungi (Ashhab
et al., 2014). All Ascomycota belonged to subphylum Pezizomycotina,
class Dothideomycetes and family Capnodiaceae, while all Basidiomy-
cota belonged to subphylum Agaricomycotina (Belila et al., 2017; Saeed
et al., 2019). These results are generally in accordance with the reports
on halotolerant and halophilic fungi in natural hypersaline environ-
ments worldwide (Gostincar and Gunde-Cimerman, 2023; Gostincar
et al., 2023). In nature, fungi populate salt flats, salterns, and other
high-salt habitats, including those with high concentrations of other
salts, such as bitterns, rich with MgCl, (Zajc et al., 2014) or waters of the
Dead Sea (Wasser et al., 2003; Kis-Papo et al., 2003).

Fungi in hypersaline environments can be divided into three main
groups. The first is represented by halotolerant sporadic and occasional
residents. Their relative abundance varies, emphasizing the influence of
surrounding conditions. Adaptations of these fungi ranges from toler-
ance to low water activity to thriving in salt-free media. Among fungi
that represent sporadic occurrences are representatives of the genera
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Alternaria, Aspergillus, Mycosphaerella, Penicillium and Phoma
(Gunde-Cimerman et al., 2005; Gunde-Cimerman et al., 2009; Gunde--
Cimerman and Zalar, 2014). The second, more halo-adapted group, is
represented by polyextremotolerant generalistic species, that occur
frequently in hypersaline environments, but are adapted to more than
one type of stress. Within this group are the biotechnologically impor-
tant Aureobasidium pullulans, A. melanogenum and different species of the
genera Cladosporium, Aspergillus and Penicillium (Table 2). These fungi
are generally adapted to salinity from 10-15 % NaCl (Gostincar and
Gunde-Cimerman, 2023; Gostincar et al., 2022). The third group are
core community members, playing pivotal roles in hypersaline ecosys-
tems globally. The dominant fungi within this group are the black yeasts
such as Hortaea werneckii and the halophilic basidiomycetous genus
Wallemia. H. werneckii and W. ichthyophaga have become model organ-
isms for studying halotolerance and halophily in fungi as they exhibit
remarkable adaptations to extreme salinity (Gostincar and
Gunde-Cimerman, 2023; Gunde-Cimerman and Plemenitas, 2006;
Gunde-Cimerman et al., 2018).

6.1.3. Microalgae

Microalgae are photosynthetic autotrophic microorganisms typically
inhabiting fresh and saltwater environments and extra-aquatic habitats,
found in water column, on submerged or moistened surfaces, in sedi-
ments or soil. They occur singly, or can form coenobia or chains of
diverse morphology. Their rapid propagation, hight photosynthetic ef-
ficiency and the ability to accumulate large amounts of valuable bio-
products make microalgae a suitable biosynthetic platform for industrial
raw materials for food, biofuels and other high-value compounds. In
addition, microalgal cultivation in brine can have positive environ-
mental impacts. Photosynthetic microorganisms naturally remove CO;
by fixation, thus reducing its emissions. For instance, as CO» is consid-
ered as a contaminant in biogas production, it can be coupled with algal
cultivation (Rodero et al., 2020). Algae also demonstrate significant
potential for removing both organic pollutants (Baghour et al., 2019)
and inorganic contaminants (Ordonez et al., 2023) from water through
various mechanisms, including oxidation and biosorption. Overall, there
is an increasing interest in the cultivation of microalgae (Tan et al.,
2020; Guieysse and Plouviez, 2024).

Species that can be cultivated in desalination brine are, among
others, Chlorella vulgaris, Scenedesmus quadricauda, Nannochloropsis sp.
and Dunaliella tertiolecta. They can be used to biodegrade and remove
nutrients from polluted water, for example S. quadricauda, which has
been shown to induce the degradation of polymeric organic matter in
the RO concentrate (Maeng et al., 2018). Other species can be cultivated
for their biomass and bioactive compounds (Table 2). In fact, some
species showed improved biomass production when cultivated in desa-
lination concentrate media compared to other conventional media
(ElBarmelgy et al., 2021; Shirazi et al., 2018). An option is also to
supplement the commercial growth media with brine to reduce the costs
related to growth media, while at the same time valorizing brine. Sup-
plementing commercial media with brine was also shown as beneficial
for biomass productivity and bioactive compounds production (Matos
et al., 2018; Bhandari and Prajapati, 2022).

6.2. Brine as a medium for supporting the growth of macroorganisms

The use of reject brine for agricultural purposes, including the irri-
gation of forage shrubs or halophytic crops, as well as its applications as
a mineral source for crops in hydroponic systems and aquaculture, is
gaining popularity as an alternative approach of managing this waste
(Jiménez-Arias et al., 2022).

6.2.1. Soil irrigation for halophytic crops

Halophytes are a relatively small group of taxonomically diverse
plants that grow in high-salinity environments where the salt concen-
tration is above 200 mM NaCl (with some species thriving in
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environments with over 2 M of NaCl (Volkov, 2015)), which is signifi-
cantly higher than the salinity levels tolerated by most plants (Vu et al.,
2022). Halophytes sequester salts, and the degree of salt uptake varies
between plant species, affecting the efficiency of their use for remedia-
tion of affected soils (Ahmadi et al., 2022). Hence, halophyte cultivation
can generate economic yields for rural communities while supporting
the ecosystem restoration, reducing the discharge of saline water into
sewer systems and natural drainages, and reducing the cost burden of
brine disposal from desalination processes, thus allowing for revegeta-
tion and phytoremediation of brine-impacted lands (Park et al., 2023;
Lucker et al., 2023; Green et al., 2020; Young et al., 2011; Gerhart et al.,
2006). In addition to their use in remediation, halophytes have several
productive applications (due to their high levels of protein, phenolic
compounds, lipids, and essential minerals like potassium, calcium, and
magnesium): production of food, oilseeds for human consumption and
biodiesel, and animal feed, among others (Panta et al., 2014; Centofanti
and Banuelos, 2019; Accogli et al., 2023). For these reasons, halophytes
have been identified as promising candidates for cultivation using saline
wastewater (Panta et al., 2016). So far, financial analyses of these ac-
tivities suggest a significant potential for integrating halophytic com-
ponents into farms utilizing reject brine from desalination plants
(Robertson et al., 2019). However, it is important to note that salinity
levels may gradually rise due to inadequate drainage systems, which
could ultimately lead to soil degradation over time (Al-Faifi et al., 2010).

Desalination brine for irrigation of halophyte crops in biosaline
agriculture has already been showcased. Most of the species of halo-
phytes tested belonged to the two genera of Amaranthaceae s.l., Sali-
cornia and Atriplex (Table 2). Salicornia (commonly known as glasswort)
attracted much interest because of its crunchy and salty taste, and high
nutritional value resulting from approximately 34 % of protein per dry
weight and represents an additional local food production resource (e.g.,
as a highly valued salad vegetable in the Mediterranean diet), coupled
with environmental control over brine deposition (Oron et al., 2023;
Lyra et al., 2022; Lee et al., 2024). In regions such as Northern France
and The Netherlands, Salicornia is already featured in local dishes and
culinary publications. While market prices vary, Salicornia species have
been sold in niche markets at rates of up $8 per kilogram. Their culinary
versatility extends to products such as burgers, crackers, and juices (Lee
et al., 2024; Bazihizina et al., 2024). Moreover, there is growing interest
in S. bigelovii due to its potential in the production of edible oils and
biofuels as its seeds contain over 25 % of oil (Al-Tamimi et al., 2023).
When irrigated with nutrition-rich brine from aquaculture systems,
S. bigelovii demonstrated yields up to 16 kg/m? The gross economic
water productivity (GEWP) of such systems ranges from $1.5 to $6.2 per
kilogram, exceeding desalination costs by up to fourfold (Al-Tamimi
et al., 2023). Financial analyses estimate that under optimal conditions,
cultivation of S. bigelovii can yield returns of approximately $76,000 per
hectare, outperforming other halophytes like Distichlis spicata, and
Sporobolus virginicus.

The other popular genus in the experimental brine-irrigated bio-
saline agriculture is Atriplex, appreciated for its value as animal feed, as
well as in phytoremediation, erosion control, revegetation, landscape
projects, and supporting wildlife habitats (Lucker et al., 2023;
Gomez-Bellot et al., 2021; Glenn et al., 2009; Rocha de Moura et al.,
2019; Jordan et al., 2009). It is primarily cultivated as forage in (semi)
arid regions, including parts of Brazil and Australia. Known for its
exceptional resilience to salinity and drought, Atriplex is especially
valuable for livestock production in harsh environments. Its capacity to
maintain high biomass yields under extreme conditions makes it an
important asset for sustainable agriculture in saline and arid zones
(Porto et al., 2006).

As it was already noted, integrated agricultural systems are highly
prospective in respect to brine pretreatment before plant irrigation. In
these systems, desalination brine is first used as the medium for land-
based hypersaline aquaculture (first for growing duckweed or Spir-
ulina, then for growing fish), where it becomes enriched with nitrogen
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and phosphorus from fish waste (Sanchez et al., 2015; Oron et al., 2023).
The integrated approach maximizes the use of brine for food production
and environmental control. Such nutrient-enriched »aquabrine« has a
more positive impact on the irrigated plants than the crude desalination
brine (Al-Tamimi et al., 2023).

6.2.2. Hydroponic farming

Hydroponics is a method for growing agricultural crops without soil
using a water-enriched nutrient solution. This method may also include
an aggregate substrate such as vermiculite, coconut coir or perlite
(Khan, 2018). Hydroponic systems are very efficient in terms of nutrient
and water use, as well as crop yield. A wide range of commercial crops
can be grown hydroponically, such as tomatoes, cucumbers, lettuce and
strawberries (Kannan et al., 2022).

Rejected brine from desalination plants can be potentially used as a
water and nutrient source in hydroponic systems, providing a suitable
nutrient composition. For example, the rejected brine from a desalina-
tion plant in Tenerife (Canary Islands), diluted 1:40 and enriched with
Hoagland’s standard nutrient solution, was tested as hydroponic me-
dium for tomatoes. Although the yield of fruits reduced in fresh weight
by 40 % compared to control plants, the organoleptic properties of the
fruits improved, as deduced from their total soluble solids, dry matter
percentage, titrable acidity and pH. These results were attributed to a
high content of macronutrient ions in brine, especially Ca®", K*, Mg?",
while the Na™ content reached levels above 16 g L™}, adding to overall
brine salinity and conductivity (Jiménez-Arias et al., 2020). Later, a
one-year study of the rejected brine from 5 desalination plants in Ten-
erife showed that specific minerals were found at consistently reliable
high concentrations during analyses (Ca*", K, Mg?*, SO and B"),
regardless of the plant location, and the rejected brine can successfully
be used to hydroponically cultivate carnations (Jiménez-Arias et al.,
2022). The studies in Tenerife suggest that implementing a hydroponic
system adjacent to hotel desalination plants could enable the production
of horticultural and floricultural crops. From the economic point of
view, the use of rejected brine at a dilution of 1,/40 directly saves 20 % of
hydroponic solution cost due to the mineral nutrients present in the
brine (Jiménez-Arias et al., 2020). Also, the use of rejected brine from
desalination plants may reduce the fertilization cost by 21 % without
productivity losses (Jiménez-Arias et al., 2022; Magan et al., 2008).

In Brazil, hydroponic experiments were conducted with a variety of
mini-watermelon and rejected brine from desalination plants. Growth,
physiological responses, yield and fruit quality of mini-watermelons
were evaluated. For these experiments, plants were grown in hydro-
ponic systems with mixtures of brine and tap water at three different
proportions ranging from 15 %—60 % brine and different substrates. The
use of saline solution in water mixtures up to 6.90 dS m! (60 % saline
solution) in the preparation of hydroponic nutrient solutions reduced
the growth of the fruits, but did not affect their chemical properties. In
fact, there was an improvement in the vitamin C and soluble solids
content of the fruit of plants grown with the brine. An increase in soluble
solids content of the fruit is related to the amount of sugars and therefore
to the taste of the fruit, giving a higher quality product. From the
photosynthetic responses of the mini-watermelon subjected to salt
stress, authors deduced that reductions in plant growth are not related to
low photosynthetic efficiency, but rather to the reduction of photosyn-
thetically active leaf area, due to disturbances in cell growth and
expansion (Da Silva et al., 2022). In subsequent studies, it was found
that although salt stress affected fruit production in mini-watermelon, it
was not detrimental to seed production, viability and seed vigor (Alves
et al., 2022).

6.2.3. Aquaculture

Brine can effectively be used for fish farming of tilapia, which is the
common name for nearly one hundred species of cichlid fish. Tilapia are
mostly freshwater fish found in shallow streams, ponds, rivers and lakes.
Red tilapia are tolerant to salt water (Mirera and Okemwa, 2023).
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Several countries have introduced red tilapia farming and over the last
20 years, indeed, saltwater tilapia farming has increased exponentially
from 1.6 thousand tonnes live weight in 2000 to 107.4 thousand tonnes
in 2020 (FAO 2022).

In Brazil, the "Agua Doce" programme takes a different approach to
the disposal of brine rejects from small and medium-sized inland desa-
lination plants to serve rural communities or to augment fresh water
supplies. The valorization of the rejected brine starts with its use in fish
farming of tilapia species, which are well adapted to high salinity. In a
second step, the brine leaving the tilapia ponds is mixed with organic
fertilizers (manure from local livestock) and used to irrigate halophyte
fodder for local livestock. Since this solution was adopted, several vil-
lages in the semi-arid regions of Brazil have benefited from both a
potable water supply and a boost to the local economy (Sanchez et al.,
2015). The socio-economic analysis of this programme showed that,
although it may not be profitable in the short term to recoup the initial
investment (15 years would be required for a return on the invested
capital), positive social and environmental impacts were generated by
adding value to the rejected brine and providing food and nutritional
security for family farming (Souza et al., 2022).

Brine can also be used for growing Artemia, an essential live feed for
the aquaculture industry (K. Madkour et al., 2023). Artemia, commonly
known as brine shrimp, is a crustacean that can tolerate high levels of
salt. This makes it a suitable candidate for cultivation in desalination
effluents, especially when integrated with algal cultivation and fish
aquaculture in multitrophic systems (Sanchez and Matos, 2018). Despite
its potential, further research is needed to optimize the growth condi-
tions for Artemia cultivation in desalination brine.

Compared to halophyte agriculture, the use of brine from desalina-
tion plants can have a wide application potential in aquaculture, both
for fish and microalgae, with lower risks as increased salt concentrations
do not affect the soil/arable land. However, the bioaccumulation of toxic
substances that may occur in the aquaculture of certain organisms when
using rejected brine must be assessed on a case-by-case basis.

6.3. Biodesalination processes

Besides cultivation in brine, innovative approaches can also consider
biological desalination (biodesalination). Estimates for brackish water
desalination suggest a potential efficiency of 40 % salt removal of bio-
desalination by algae and cyanobacteria (A.M. Zafar et al., 2022). Salt
removal efficiency depends on the temperature (Wei et al., 2020). It is an
inventive approach to desalination, functioning through the assimila-
tion and retention of salts by various salt-tolerant living organisms. In
addition, economically important secondary metabolites can be pro-
duced by organisms that can survive at high salt concentrations. In a
win-win strategy, the resulting biomass from biodesalination can be
used in biotechnological applications.

6.3.1. Use of microalgae for desalination processes

In search of environmentally friendly desalination processes, algal-
based desalination is of potential relevance through mechanisms of
biosorption (through adsorption) and bioaccumulation (through ab-
sorption) (Wei et al., 2020; L. Gao et al., 2021; Kumar Patel et al., 2021).
An additional added benefit is to couple biodesalination with halophilic
strains capable of biodegradation of aromatic compounds and other
contaminants in brine, parallel to what has been suggested for treatment
of saline wastewater, generated by several industries, such as petroleum,
tannery and textile ones (Mainka et al., 2021). The reduction of carbon
emissions from algal photosynthesis is an additional benefit of
biodesalination.

Microalgae of the genera Dunaliella, Scenedesmus and Chlorella have
all been used for biodesalination purposes with up to 67 % of desali-
nation success (Shirazi et al., 2018; Kumar Patel et al., 2021; Sahle--
Demessie et al., 2019; Moayedi et al., 2019; Barahoei et al., 2021).
Species of cyanobacterial genera such as Phormidium, Synechococcus and
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Synechocystis have also shown potential for use in biodesalination pro-
cesses (Amezaga et al., 2014; Minas et al., 2015; A.M. Zafar et al., 2022).
Genetic engineering techniques and co-culturing have also been used to
increase both salt tolerance and desalination efficiency of the algae
(Danaeifar et al., 2023).

Despite its potential as a sustainable technology, algal-based desa-
lination is still in its early stages of development. The limitations of such
systems are their overall higher cost due to the extended contact time
required for the slow bioaccumulation processes, a lower capability of
salt removal compared to the existing desalination alternatives, inhibi-
tion of algal growth by high salinity, and high costs associated with
separating algal biomass from the medium, the dependency on tem-
perature, light conditions, pH, and nutrients (L. Gao et al., 2021; Ser-
gany et al., 2019). Realistically, such technologies can serve as auxiliary
desalination units in hybrid desalination setups or the first step of partial
desalination, functioning as a pre-treatment desalination stage (L. Gao
et al., 2021; L. Gao et al., 2021) and preparing microalgae for use while
the partially desalinated brine is applied in other technologies (e.g.,
cultivation of biotechnologically relevant microorganisms, as proposed
above, and also in Table 2). Further research, technological improve-
ments, feasibility studies, and life cycle analyses are essential to advance
desalination technology beyond the proof-of-concept stage.

6.3.2. Growth/cultivation of seaweed near desalination plants

The role of seaweed in achieving a circular economy has gained
significant attention in recent years (Torres et al., 2019). The term
seaweed refers to macroalgae typically originating from the marine
environment but may also be extended to species of freshwater macro-
algae. Seaweeds are a renewable resource, used as a source of food, feed,
or for a wide range of commercial products. Considering also their rapid
growth rate coupled with a low environmental impact and their ability
to sequester carbon, seaweeds are ideal candidates for circular economy
(Yong et al., 2022).

Seaweed can absorb and assimilate nutrients or waste and effectively
reduce their concentration from brine discharge and, in turn, produce
valuable seaweed biomass. They essentially act as natural biofilters. As a
result, the brine released back into the environment after phycor-
emediation with seaweed will have reduced nutrient levels, reducing its
impact on marine ecosystems health. Seaweed are widely used for
bioremediation as part of integrated multitrophic aquaculture (IMTA)
systems (Chopin and Tacon, 2021). This logic can therefore be extended
to bioremediation of other industrial processes such as desalination.

The selection of species, however, is critical as not all species are
adapted to high salinity or are amenable to land-based aquaculture.
Another major problem when selecting species for a circular economy
approach is the need to identify candidates with an existing market
demand. Gracilaria, Pyropia (nori) and Ulva (sea lettuce) are three ex-
amples of seaweeds that are well-adapted to thrive in high salinity en-
vironments such as those created by brine discharge. The candidates
mentioned above are currently utilized for a range of commercial ap-
plications and are linked to an established market (Aratjo et al., 2021).
For example, Gracilaria is used for the extraction of hydrocolloids, while
Pyropia and Ulva are applied for food and feed respectively. Research
using Ulva for bioremediation already exists (Yokoyama and Ishihi,
2010) and can provide a foundation for its application in desalination, a
field in which seaweed has not yet been sufficiently studied or imple-
mented. The principles of phycoremediation may be applied to seaweed
for bioremediation as well as for the accumulation of heavy metals (Ali
et al., 2013).

Phycoremediation using seaweed could indeed become integrated
into the design of desalination plants. Constructing raceways or ponds
near brine discharge outflow would enable the seaweed to naturally
absorb nutrients over a short period of time. This integration not only
supports environmental stewardship but also aligns with the principles
of circular economy by transforming waste into a valuable resource
(Aratjo et al., 2021). The concept of integrating seaweed as natural
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biofilters in desalination plants has not been extensively explored in the
literature, yet it holds significant potential. However, further research
and development is required, particularly in selecting species or strains
(Lawton et al., 2013), with an emphasis on local or endemic varieties.

Further research into cultivation conditions, nutrient uptake rates
(Roleda and Hurd, 2019), and biomass harvesting methods or stocking
densities is also needed to ensure the effectiveness of the treatment.
Finally, collaboration between industry, i.e., desalination plants, re-
searchers, and environmental agencies will be crucial (Sola et al., 2020).
Regulatory frameworks and guidelines should also be established to
ensure that the treated brine meets acceptable environmental standards
before being discharged into the marine environment and that the
phycoremediation process using seaweed is indeed effective. With this
in mind, safety standards should also be applied to the seaweed biomass
to ensure that it is safe for commercial applications (Banach et al.,
2020).

7. Technical, economic and social perspective

Several of the solutions presented in the previous chapter already
show the market potential for targeted cultivation of organisms
(Table 3). Regarding bacteria, recent case studies with halophilic and
halotolerant microorganisms have demonstrated that saline environ-
ments can support both high-margin and bulk bioprocesses. Ectoine, a
compatible solute valued at almost 1000 USD per kilogram and with
increasing demand (Cantera et al., 2020), has a production of over 15,
000 tons per year (Hobmeier et al., 2022). The production is based on
bacterial milking, which includes microbial growth in high salinity
media (15 % (w/v) NaCl for Halomonas elongata) (Kunte et al., 2014). A
techno-economic analysis of ectoine production using Methylomicrobium
alcaliphilum in bubble-column reactors fed with methane estimated
production costs of 158 - 275 € per kg, substantially lower than the
market price range of 600 - 1000 € per kg. These cost savings were
largely attributed to the high salinity enabling non-sterile operation and
the use of low-cost carbon sources such as methane (Pérez et al., 2021).
In a separate study, a 7.5 L non-sterile seawater fermentation with
engineered Vibrio natriegens produced 41 g L' of 2,3-butanediol with a
productivity of 3.4 g L' h™!, illustrating that salinity can replace steam
sterilisation while still delivering competitive titres and productivities
(Meng et al., 2022). However, as processes are scaled up, the benefits of
high-salinity media must be weighed against several technical limita-
tions. Equipment corrosion, increased energy demands for pumping
viscous or dense brines, and material compatibility become significant
cost drivers. More critically, scale-up introduces oxygen transfer bot-
tlenecks: as NaCl concentrations rise, salt precipitation may occur and
the volumetric oxygen-transfer coefficient (kLa) drops significantly,
impairing aerobic metabolism. Overcoming these issues may require
customised reactor designs to maintain efficient gas-liquid mass trans-
fer. Generally, desalination brines offer a promising, cost-effective cul-
ture medium for halophilic and halotolerant microorganisms,
supporting the sustainable production of high-value biochemicals such
as ectoine and biosurfactants (Oren, 2010). Their naturally high salinity
reduces contamination risks and selectively promotes the growth of
target strains. Still, their ionic imbalance and potential toxicity may
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inhibit growth unless pre-treatment and nutrient supplementation are
applied (Backer et al., 2022). Furthermore, downstream processing in
salt-rich matrices remains a critical hurdle, as it is often energy-intensive
and technically complex.

The global market value of algal production is approaching a billion
USD (Table 3 shows the segment for pigments) (Yildirim et al., 2022).
Among microalgae that can be cultivated in brine, Dunaliella salina
currently holds the strongest commercial position (Meticulous research
2024; Global Market Insights 2023). The projected market growth
(Table 3) is primarily driven by demand for natural f-carotene in the
nutraceutical, cosmetics, aquaculture, and animal feed sectors. With the
productivity of 15 g of p-carotene per 1 ton of growth medium, the daily
world production of 50 million m® of brine could support the production
of 750 tons of p-carotene per day (Yildirim et al., 2022). Increasing
consumer preference for natural products over synthetic alternatives
supports this trend, despite regulatory and production scale up com-
plexities (Prates, 2025). However, microalgae cultivation in brine,
especially hypersaline brines such as RO concentrate, often requires
dilution or pretreatment to reduce salinity and remove inhibitory
components (Rawat et al., 2011). Techno-economically, open raceway
ponds offer lower capital costs but higher water consumption and land
use, whereas photobioreactors enable controlled environments with
higher productivity but incur significantly higher energy inputs and
operational costs (Barsanti and Gualtieri, 2014; Slade and Bauen, 2013).
Life Cycle Assessment (LCA) studies show that environmental impacts of
algae systems significantly differ, depending on the cultivation method,
with photobioreactors consuming 5-10 times more energy per unit
biomass than open ponds but offering improved land-use efficiency and
product purity (Clarens et al., 2010; Lardon et al., 2009).

Despite lower yields compared to conventional crops, halophytes are
gaining traction across sectors due to their resilience and ability to grow
in saline conditions. The halophyte-based biodiesel market (Table 3) is
driven by demand for renewable, non-food-based fuels and tightening
environmental regulations (Verified Market Reports 2025). The saline
agriculture market is expected to double by 2033, especially in regions
facing salinity or freshwater scarcity (Bussiness Research Insights 2024).
The estimated gross returns range between $1500-$5000 per hectare
annually, depending on the product and market access (Panta et al.,
2014). Halophyte cultivation enables the use of marginal lands,
relieving pressure on fertile soils and freshwater. However, the sector
still faces infrastructure challenges, underdeveloped food markets, and
ecological risks such as the spread of invasive species (Al Hassan et al.,
2016). Moreover, scalability is restricted by land requirements,
species-specific salt tolerances, and risks of soil salinization. The global
Artemia market is driven by growing demand for sustainable live feed in
aquaculture. However, natural Artemia populations are highly vulner-
able to habitat loss, pollution, and climate change, with over half of
cyst-producing salt lakes facing degradation. Reliance on wild harvest-
ing raises ecological concerns and threatens supply stability (K. Mad-
kour et al., 2023; Zion Market Research 2024). In this context,
controlled Artemia cultivation using desalination brine offers a prom-
ising alternative that supports both resource sustainability and aqua-
culture resilience.

In terms of social sustainability, social LCA (S-LCA) is still immature

Table 3
Selected organisms with potential for cultivation in brine, along with their applications and market value. CAGR (Compound Annual Growth Rate).
Organism Application Market value Reference
Bacteria Industrial $5.9 billion in 2020 and projected to grow at a CAGR of 7.6 % from 2021 t0 2026  (Rathakrishnan and Gopalan, 2022; Enache and Kamekura,
enzymes 2010)
Microalgae  Pigments $51-88 million in 2022/2023 and projected to grow at a CAGR of up to 4.4 % (Meticulous research 2024; Global Market Insights 2023)
until 2032
Plants Biodiesel $1.2 billion in 2024, growing at a CAGR of 15.2 % (Verified Market Reports 2025)
Plants Agriculture $1.63 billion in 2024, with a CAGR of 8.5 % (Bussiness Research Insights 2024)
Artemia Feed $144 million in 2022 and projected to grow at a CAGR of 9.38 % between 2023  (Zion Market Research 2024)

and 2030
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compared to LCA (Harris et al., 2025; Tofrida et al., 2018), and most
work using life cycle methods to assess, e.g., wastewater management
systems, is limited to only one or two of the sustainability pillars and
omits that of social sustainability (Tsalidis et al., 2023). The situation is
similar in the brine industry: while the technical, environmental and
economic aspects of brine treatment systems are found in the literature,
the social performance of the industry and brine treatment systems is not
clearly introduced (Tsalidis et al., 2020). The aim of S-LCA is to assess
the social risks and opportunities of brine valorization and to understand
how brine impacts people - starting with workers and local communities
who may be most affected, as well as potential customers and all other
stakeholders. As far as workers are concerned, the most important as-
pects are working conditions, the impact of brine reuse on health,
environmental safety, water valuation and land use. Potential customers
could gain access to more affordable materials/products, which has a
positive impact on their social life (Tsalidis et al., 2020). While The
S-LCA does not provide information on whether or not a product should
be manufactured, the information gained from an S-LCA can neverthe-
less provide “food for thought™ and be helpful in decision-making (Life
Cycle Initiative).

Desalination brine offers a viable and sustainable alternative to
conventional culture media, and does not demand the use of arable land
(in case of halophytes), thus representing promising avenues for
resource recovery and economic gain, supporting a circular bioeconomy
framework. The potential for valorizing brine depends on species se-
lection, regional market demands, brine composition, technological
advancements, supportive policies and acceptance. Scale-up challenges,
particularly the effects of high salinity on reactor design and down-
stream processing, must be addressed to ensure technical feasibility.
Additionally, market competition and regulatory approvals can pose
significant barriers to commercialization (Oren, 2010).

8. Conclusions

- Halophilic organisms, originating from different taxonomic groups,

possess unique physiological and biochemical characteristics that

make them ideal for biotechnological applications. Desalination

brine, a by-product of desalination processes, can be used as a

valuable medium for cultivating these organisms. This approach

offers a more circular and sustainable alternative to brine disposal,
which can otherwise be harmful to the environment.

Desalination brines are most commonly studied for algal cultivation

and growth. Algae can be used for prodution of valuable metabolites

and biomass. Furthermore, algae can also be utilized to purify
polluted brines, offering an environmentally friendly solution.

However, other organisms are of high potential and future efforts

should concentrate on optimizing the cultivation conditions for (i)

algae and (ii) other organisms of biotechnological relevance.

- Another high-potential innovative solution that reduces the quanti-
ties of discharged brine are integrated desalination approaches,
where processes of (bio)desalination are coupled with the cultivation
of biotechnologically relevant (micro)organisms. These can be uti-
lized in industries such as food, feed, agriculture, and biomedicine.
However, brine components and residual contaminants can be haz-
ardous when spread over large agricultural areas. This approach
therefore has to be carefully managed and monitored to safeguard
the environment, ensure the safety of agricultural products and
protect human health.

- Overall, further research is needed to identify the most promising

strains for industrial applications and optimize and scale up the

biodesalination as well as to use brine in agriculture, aquaculture
and biotechnology. The most promising crops, species and strains for
industrial applications should be identified.

Nevertheless, it is essential to embrace innovative solutions that are

not only effective but also sustainable. This research should hence

involve tailoring approaches to specific local conditions, including
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assessment of environmental impact, environmental sustainability,
techno-economic viability and social implications.
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